python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python 非线性规划

Python解决非线性规划中经济调度问题

作者:电力系统与算法之美

Scipy是Python算法库和数学工具包,包括最优化、线性代数、积分、插值、特殊函数、傅里叶变换等模块。scipy.optimize模块中提供了多个用于非线性规划问题的方法,适用于不同类型的问题。本文将利用起解决经济调度问题,感兴趣的可以了解一下

1、概述

今天重点讲非线性规划中scipy.optimize.minize库在非线性规划中的应用。Scipy 是 Python 算法库和数学工具包,包括最优化、线性代数、积分、插值、特殊函数、傅里叶变换、信号和图像处理、常微分方程求解等模块。 

scipy.optimize 模块中提供了多个用于非线性规划问题的方法,适用于不同类型的问题。

brent():单变量无约束优化问题,混合使用牛顿法/二分法。

fmin():多变量无约束优化问题,使用单纯性法,只需要利用函数值,不需要函数的导数或二阶导数。

leatsq():非线性最小二乘问题,用于求解非线性最小二乘拟合问题。

minimize():约束优化问题,使用拉格朗日乘子法将约束优化转化为无约束优化问题。

2、scipy.optimize.minimize参数

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

解释:

3、简单案例引出

(1)Scipy.optimize实现

import numpy as np
from scipy.optimize import minimize
#目标函数
def fun(args1):
    a,b,c,d=args1
    r=lambda x:(a*x[0]*x[0]+b*x[1]*x[1]+c*x[2]*x[2]+d)
    return r
def con(args2):
    x0min,x1min,x2min=args2
    cons=({'type':'eq','fun':lambda x:-x[0]-x[1]**2+2},
          {'type':'eq','fun':lambda x:x[1]+2*x[2]**2-3},
          {'type':'ineq','fun':lambda x:x[0]**2-x[1]+x[2]**2},
          {'type': 'ineq', 'fun': lambda x: -(x[0]+x[1]**2+x[2]**2-20)},
          {'type':'ineq','fun':lambda x:x[0]-x0min},
          {'type':'ineq','fun':lambda x:x[1]-x1min},
          {'type':'ineq','fun':lambda x:x[2]+x2min})
    return cons
def main():
    args1=(1,2,3,8)
    args2=(0,0,0)
    cons=con(args2)
    x0=np.array((1,2,3))    #初值
    res=minimize(fun(args1),x0,method='SLSQP',constraints=cons)
    print('minf(x):',res.fun)
    print(res.success)
    print('x:',[np.around(i) for i in res.x])
    print('x1:',res.x[0])
    print('x2:',res.x[1])
    print('x3:',res.x[2])
    #另一种表述
    print("optimization problem(res):{}".format(res.x))
    print("Xopt={}".format(res.x))
    print("minf(x)={:.4f}".format(res.fun))
 
if __name__ == "__main__":
    main()

输出结果

minf(x): 13.878994794551044
True
x: [1.0, 1.0, 1.0]
x1: 0.6743061260520056
x2: 1.1513878035150682
x3: 0.961408393062538
optimization problem(res):[0.67430613 1.1513878  0.96140839]
Xopt=[0.67430613 1.1513878  0.96140839]
minf(x)=13.8790
 
Process finished with exit code 0

(2)遗传算法包实现 (—sko.GA&sko.DE)

#from sko.DE import DE   #差分进化法
from sko.GA import GA   #遗传算法
def obj_func(p):
    x1, x2, x3 = p
    return x1 ** 2 + 2*x2 ** 2 + 3*x3 ** 2+8
 
 
constraint_eq = [
    lambda x: -x[0]-x[1]**2+2,
    lambda x: x[1]+2*x[2]**2-3
]
 
constraint_ueq = [
    lambda x: -x[0]**2+x[1]-x[2]**2,
    lambda x: x[0]+x[1]**2+x[2]**2-20
]
 
#de = DE(func=obj_func, n_dim=3, size_pop=50, max_iter=800, lb=[0, 0, 0],constraint_eq=constraint_eq, constraint_ueq=constraint_ueq)
ga = GA(func=obj_func, n_dim=3, size_pop=50, max_iter=800, lb=[0, 0, 0],
        constraint_eq=constraint_eq, constraint_ueq=constraint_ueq)
 
 
#best_x, best_y = de.run()
best_x, best_y = ga.run()
print('best_x:', best_x, '\n', 'best_y:', best_y)

输出结果

best_x: [1. 1. 1.] 
 best_y: [14.]
 
Process finished with exit code 0

4、电力系统中应用——经济调度

(1)案例

(2)Scipy.optimize实现 

import numpy as np
from scipy.optimize import minimize
#目标函数(FG1+FG2+FG3)
def fun(args1):
    a0,a1,a2,b0,b1,b2,c0,c1,c2=args1
    v=lambda x:(a0+a1*x[0]+a2*x[0]*x[0]
                +b0+b1*x[1]+b2*x[1]*x[1]
                +c0+c1*x[2]+c2*x[2]*x[2])
    return v
def con(args2):
    D,x0min,x0max,x1min,x1max,x2min,x2max=args2
    cons=({'type':'eq','fun':lambda x:D-x[0]-x[1]-x[2]},
          {'type':'ineq','fun':lambda x:x[0]-x0min},
          {'type':'ineq','fun':lambda x:-x[0]+x0max},
          {'type':'ineq','fun':lambda x:x[1]-x1min},
          {'type':'ineq','fun':lambda x:-x[1]+x1max},
          {'type':'ineq','fun':lambda x:x[2]-x2min},
          {'type':'ineq','fun':lambda x:-x[2]+x2max})
    return cons
def main():
    args1=(4,0.3,0.0007,3,0.32,0.0004,3.5,0.3,0.00045)
    args2=(700,100,200,120,250,150,300)
    cons=con(args2)
    x0=np.array((150,250,200))    #初值
    res=minimize(fun(args1),x0,method='SLSQP',constraints=cons)
    print('FGi-代价:',res.fun)
    print(res.success)
    print('PGi—解:',[np.around(i) for i in res.x])
    print('PG1:',res.x[0])
    print('PG2:',res.x[1])
    print('PG3:',res.x[2])
 
if __name__ == "__main__":
    main()

输出结果

FGi-代价: 305.9673913046252
True
PGi—解: [176.0, 250.0, 274.0]
PG1: 176.0874477123534
PG2: 250.0
PG3: 273.9125522876465
 
Process finished with exit code 0

(3)粒子群包实现(pyswarm)

pyswarm是一个支持带约束的粒子群优化包,sko.PSO中的pso仅支持带上下限的约束,不支持等式和不等式约束,所以不太喜欢。

from pyswarm import pso
 
def object_func(x):
    return (4+0.3*x[0]+0.0007*x[0]*x[0]+3+0.32*x[1]+0.0004*x[1]*x[1]+3.5+0.3*x[2]+0.00045*x[2]*x[2])
 
#不等式约束
 
def cons1(x):
    return [x[0]+x[1]+x[2]-700]
 
lb = [100, 120, 150]#
ub = [200, 250, 300]
 
xopt, fopt = pso(object_func,lb,ub,ieqcons=[cons1], maxiter=100,swarmsize=1000)
print(xopt)
print(fopt)

输出结果

Stopping search: Swarm best objective change less than 1e-08
[179.34039956 250.         270.65960045]
305.97956393103044
 
Process finished with exit code 0

以上就是Python解决非线性规划中经济调度问题的详细内容,更多关于Python 非线性规划的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文