python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python虚拟机描述器

深入理解Python虚拟机中描述器的实现原理

作者:一无是处的研究僧

这篇文章主要给大家介绍一个我们在使用类的时候经常使用但是却很少在意的黑科技——描述器的实现原理,文中的示例代码讲解详细,需要的可以参考一下

在本篇文章当中主要给大家介绍一个我们在使用类的时候经常使用但是却很少在意的黑科技——描述器,在本篇文章当中主要分析描述器的原理,以及介绍使用描述器实现属性访问控制和 orm 映射等等功能!在后面的文章当中我们将继续去分析描述器的实现原理。

描述器的基本用法

描述器是一个实现了 __get____set____delete__ 中至少一个方法的 Python 类。这些方法分别用于在属性被访问、设置或删除时调用。当一个描述器被定义为一个类的属性时,它可以控制该属性的访问、修改和删除。

下面是一个示例,演示了如何定义一个简单的描述器:

class Descriptor:
    def __get__(self, instance, owner):
        print(f"Getting {self.__class__.__name__}")
        return instance.__dict__.get(self.attrname)

    def __set__(self, instance, value):
        print(f"Setting {self.__class__.__name__}")
        instance.__dict__[self.attrname] = value

    def __delete__(self, instance):
        print(f"Deleting {self.__class__.__name__}")
        del instance.__dict__[self.attrname]

    def __set_name__(self, owner, name):
        self.attrname = name

在这个例子中,我们定义了一个名为 Descriptor 的描述器类,它有三个方法:__get____set____delete__。当我们在另一个类中使用这个描述器时,这些方法将被调用,以控制该类的属性的访问和修改。

要使用这个描述器,我们可以在另一个类中将其定义为一个类属性:

class MyClass:
    x = Descriptor()

现在,我们可以创建一个 MyClass 对象并访问其属性:

>>> obj = MyClass()
>>> obj.x = 1
Setting Descriptor
>>> obj.x
Getting Descriptor
1
>>> del obj.x
Deleting Descriptor
>>> obj.x
Getting Descriptor

在这个例子中,我们首先创建了一个 MyClass 对象,并将其 x 属性设置为 1。然后,我们再次访问 x 属性时,会调用 __get__ 方法并返回 1。最后,我们删除了 x 属性,并再次访问它时,会调用 __get__ 方法并返回 None。从上面的输出结果可以看到对应的方法都被调用了,这是符合上面对描述器的定义的。如果一个类对象不是描述器,那么在使用对应的属性的时候是不会调用__get____set____delete__三个方法的。比如下面的代码:

class NonDescriptor(object):
    pass


class MyClass():

    nd = NonDescriptor()


if __name__ == '__main__':
    a = MyClass()
    print(a.nd)

上面的代码输出结果如下所示:

<__main__.NonDescriptor object at 0x1012cce20>

从上面程序的输出结果可以知道,当使用一个非描述器的类属性的时候是不会调用对应的方法的,而是直接得到对应的对象。

描述器的实现原理

描述器的实现原理可以用以下三个步骤来概括:

在描述器的实现中,通常还会使用 __set_name__ 方法来在描述器被绑定到类属性时设置属性名称。这使得描述器可以在被多个属性使用时,正确地识别每个属性的名称。

现在来仔细了解一下上面的几个函数的参数,我们以下面的代码为例子进行说明:

class Descriptor(object):
    def __set_name__(self, obj_type, attr_name):
        print(f"__set_name__ : {obj_type } {attr_name = }")
        return "__set_name__"
    def __get__(self, obj, obj_type):
        print(f"__get__ : {obj = } { obj_type = }")
        return "__get__"
    def __set__(self, instance, value):
        print(f"__set__ : {instance = } {value = }")
        return "__set__"
    def __delete__(self, obj):
        print(f"__delete__ : {obj = }")
        return "__delete__"
class MyClass(object):
    des = Descriptor()
if __name__ == '__main__':
    a = MyClass()
    _ = MyClass.des
    _ = a.des
    a.des = "hello"
    del a.des

上面的代码输入结果如下所示:

__set_name__ : <class '__main__.MyClass'> attr_name = 'des'
__get__ : obj = None  obj_type = <class '__main__.MyClass'>
__get__ : obj = <__main__.MyClass object at 0x1054abeb0>  obj_type = <class '__main__.MyClass'>
__set__ : instance = <__main__.MyClass object at 0x1054abeb0> value = 'hello'
__delete__ : obj = <__main__.MyClass object at 0x1054abeb0>

描述器的应用场景

描述器在 Python 中有很多应用场景。以下是其中的一些示例:

实现属性访问控制

通过使用描述器,可以实现对类属性的访问控制,例如只读属性、只写属性、只读/只写属性等。通过在 __get____set__ 方法中添加相应的访问控制逻辑,可以限制对类属性的访问和修改。

class ReadOnly:
    def __init__(self, value):
        self._value = value
    def __get__(self, instance, owner):
        return self._value
    def __set__(self, instance, value):
        raise AttributeError("Read only attribute")
class MyClass:
    read_only_prop = ReadOnly(42)
    writeable_prop = None
my_obj = MyClass()
print(my_obj.read_only_prop)  # 42
my_obj.writeable_prop = "hello"
print(my_obj.writeable_prop)  # hello
my_obj.read_only_prop = 100  # raises AttributeError

在上面的例子中,ReadOnly 描述器只实现了 __get__ 方法,而 __set__ 方法则抛出了 AttributeError 异常,从而实现了只读属性的访问控制。

实现数据验证和转换

描述器还可以用于实现数据验证和转换逻辑。通过在 __set__ 方法中添加数据验证和转换逻辑,可以确保设置的值符合某些特定的要求。例如,可以使用描述器来确保设置的值是整数、在某个范围内、符合某个正则表达式等。

class Bounded:
    def __init__(self, low, high):
        self._low = low
        self._high = high
    def __get__(self, instance, owner):
        return self._value
    def __set__(self, instance, value):
        if not self._low <= value <= self._high:
            raise ValueError(f"Value must be between {self._low} and {self._high}")
        self._value = value
class MyClass:
    bounded_prop = Bounded(0, 100)
my_obj = MyClass()
my_obj.bounded_prop = 50
print(my_obj.bounded_prop)  # 50
my_obj.bounded_prop = 200  # raises ValueError

在上面的例子中,Bounded 描述器在 __set__ 方法中进行了数值范围的检查,如果值不在指定范围内,则抛出了 ValueError 异常。

实现延迟加载和缓存

描述器还可以用于实现延迟加载和缓存逻辑。通过在 __get__ 方法中添加逻辑,可以实现属性的延迟加载,即当属性第一次被访问时才进行加载。此外,还可以使用描述器来实现缓存逻辑,以避免重复计算。

class LazyLoad:
    def __init__(self, func):
        self._func = func
    def __get__(self, instance, owner):
        if instance is None:
            return self
        value = self._func(instance)
        setattr(instance, self._func.__name__, value)
        return value
class MyClass:
    def __init__(self):
        self._expensive_data = None
    @LazyLoad
    def expensive_data(self):
        print("Calculating expensive data...")
        self._expensive_data = [i ** 2 for i in range(10)]
        return self._expensive_data
my_obj = MyClass()
print(my_obj.expensive_data)  # Calculating expensive data... 
print(my_obj.expensive_data)

上面的程序的输出结果如下所示:

Calculating expensive data...
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

从上面的结果可以看到,只有在第一次使用属性的时候才调用函数,后续再次调用函数将不会再调用函数而是直接返回缓存的结果。

实现 ORM 映射

ORM 的主要作用是把数据库中的关系数据转化为面向对象的数据,让开发者可以通过编写面向对象的代码来操作数据库。ORM 技术可以把面向对象的编程语言和关系数据库之间的映射关系抽象出来,开发者可以不用写 SQL 语句,而是直接使用面向对象的语法进行数据库操作。

我们现在需要实现一个功能,user.name 直接从数据库的 user 表当中查询 name 等于 user.name 的数据,user.name = "xxx" 根据 user 的主键 id 进行更新数据。这个功能我们就可以使用描述器实现,因为只需要了解如何使用描述器的,因此在下面的代码当中并没有连接数据库:

conn = dict()
class Field:
    def __set_name__(self, owner, name):
        self.fetch = f'SELECT {name} FROM {owner.table} WHERE {owner.key}=?;'
        print(f"{self.fetch = }")
        self.store = f'UPDATE {owner.table} SET {name}=? WHERE {owner.key}=?;'
        print(f"{self.store = }")
    def __get__(self, obj, objtype=None):
        return conn.execute(self.fetch, [obj.key]).fetchone()[0]
    def __set__(self, obj, value):
        conn.execute(self.store, [value, obj.key])
        conn.commit()
class User:
    table = 'User'                    # Table name
    key = 'id'                       # Primary key
    name = Field()
    age = Field()
    def __init__(self, key):
        self.key = key
if __name__ == '__main__':
    u = User("Bob")

上面的程序输出结果如下所示:

self.fetch = 'SELECT name FROM User WHERE id=?;'
self.store = 'UPDATE User SET name=? WHERE id=?;'
self.fetch = 'SELECT age FROM User WHERE id=?;'
self.store = 'UPDATE User SET age=? WHERE id=?;

从上面的输出结果我们可以看到针对 name 和 age 两个字段的查询和更新语句确实生成了,当我们调用 u.name = xxx 或者 u.age = xxx 的时候就执行 __set__ 函数,就会连接数据库进行相应的操作了。

总结

在本篇文章当中主要给大家介绍了什么是描述器以及我们能够使用描述器来实现什么样的功能,事实上 python 是一个比较随意的语言,因此我们可以利用很多有意思的语法做出黑多黑科技。python 语言本身也利用描述器实现了很多有意思的功能,比如 property、staticmethod 等等,这些内容我们在后面的文章当中再进行分析。

到此这篇关于深入理解Python虚拟机中描述器的实现原理的文章就介绍到这了,更多相关Python虚拟机描述器内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文