python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python绘制凸包

Python实现绘制凸包的示例代码

作者:微小冷

凸包(Convex Hull)是一个计算几何(图形学)中的概念。这篇文章主要为大家详细介绍了Python绘制凸包的示例代码,感兴趣的小伙伴可以了解一下

ConvexHull

ConvexHull是spatial中的一个类,主要功能是找到一组点的边缘,并做一个凸包。其必要的初始化参数为一个点集,点集格式为n×m维度的数组,n为点集中点的个数,m为点的维度。

from scipy.spatial import ConvexHull
import matplotlib.pyplot as plt
import numpy as np

pts = np.random.rand(30, 2)
hull = ConvexHull(pts)
plt.plot(pts[:,0], pts[:,1], 'o')
for i in hull.simplices:
    plt.plot(pts[i, 0], pts[i, 1], 'k-')

plt.show()

其中simplex为索引点的序号,绘图之后效果如下

ConvexHull有两个可选参数,其中,incremental为布尔型参数,当其为True时,允许添加新的点。

qhull_options的具体参数可以查看qhull,下面只演示一下QG。

QG

QGn表示将第n个点视为观察点,在对点集进行凸包划分后,如果把顶点连接起来,当作一个围墙,那么观察点可以看得到的点,则标记为good,其效果如下所示

pts = np.random.rand(1000, 2)
# 添加一个观察点
pts = np.vstack([pts, np.array([[2,0.5]])])
hull = ConvexHull(pts, qhull_options='QG1000')
plt.plot(pts[:,0], pts[:,1], '.')
for i in hull.simplices:
    plt.plot(pts[i, 0], pts[i, 1], 'k-')

for i in hull.simplices[hull.good]:
    plt.plot(pts[i, 0],pts[i, 1], lw=5)

plt.show()

效果如图所示

三维情况

二维情况下的凸包,很明显是由线构成的一个封闭图形,而三维情况下的凸包,自然应该是一个三维几何体。拓展到任意维度,凸包构成的实际上是一个单形,ConvexHull中的simplices便是构成单形的点,在原点集中的索引。示例如下

pts = np.random.rand(30, 3)
hull = ConvexHull(pts)
ax = plt.subplot(projection='3d')
ax.scatter(pts[:,0], pts[:,1], pts[:,2])
for i in hull.simplices:
    ax.plot_trisurf(pts[i, 0], pts[i, 1], pts[i,2], alpha=0.5)

​​​​​​​plt.show()

其中alpha参数用于调整三角面的透明度,从而可以透过凸包,看到凸包内部的点。

效果如下

ConvexHull属性

前面已经引入了单形的概念,即凸包构成的图形便是单形。作为二维情况下的凸包,是由线段围成;三维情况下的凸包,则是由平面围成;推广到任意维度,可以表述为构成凸包的单形,由超曲面围成。由于超曲面这个概念并没有边界,所以具有顶点、边缘的凸包表面,下文中通称为单形超表面。

ConvexHull类中常用的属性如下

三维情况下的超曲面方程示例如下,即每个超曲面有4个参数

>>> hull.equations
array([[-0.5509472 ,  0.72386104, -0.41530999, -0.36369123],
       [-0.26155355,  0.16210178, -0.95147925,  0.02022163],
       [-0.99132368, -0.0460725 ,  0.12310441,  0.045523  ],
       [-0.98526526, -0.07170442,  0.15527666,  0.04749854],
       [-0.15900968, -0.98529789, -0.06248198,  0.13294496],
   # .......

到此这篇关于Python实现绘制凸包的示例代码的文章就介绍到这了,更多相关Python绘制凸包内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文