python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python手肘法实现k_means聚类

Python如何通过手肘法实现k_means聚类详解

作者:河啊

K-means聚类算法是一种常见的无监督学习算法,用于将数据集分成k个不同的簇,下面这篇文章主要给大家介绍了关于Python如何通过手肘法实现k_means聚类的相关资料,需要的朋友可以参考下

1.导入matplotlib.pylab和numpy包

import matplotlib.pylab as plt
import numpy as np

2.定义实现需要用到的函数

(1)计算两点距离

# 计算两点距离
def distance(a, b):
    return np.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)

(2)取集合的中心点

# 取集合中心点
def means(arr):
    x = 0
    y = 0
    for i in range(len(arr)):
        x += arr[i][0]
        y += arr[i][1]
    if len(arr) > 0:
        x /= len(arr)
        y /= len(arr)
    return np.array([x, y])

(3)寻找下一个聚类中心点,其距离已找到的聚类中心点最远,用于初始化聚类中心

# 寻找距离已加入聚类中心数组最远的点,用于初始化聚类中心
def farthest(k_arr, arr):
    point = [0, 0]
    max_dist = 0
    for e in arr:
        dist = 0
        for i in range(len(k_arr)):
            dist += distance(k_arr[i], e)
        if dist > max_dist:
            max_dist = dist
            point = e
    return point

3.k_means方法

(1)先读取表中的数据

(2)如何随机获取其中一个点作为第一个聚类中心

(3)接下来每次获取距离之间所有聚类中心点最远的点作为下一个聚类中心点

(4)每次迭代时,遍历集合中的所有点,将其加入距离最小的聚类中心点数组中,更新聚类中心

(5)最后将数据可视化,返回分类好的数组

def k_means(k):
    # 读取数据
    kmeans_data = np.genfromtxt('kmeans_data.txt', dtype=float)
    # 初始化
    r = np.random.randint(len(kmeans_data) - 1)
    k_arr = np.array([kmeans_data[r]])
    class_arr = [[]]
    for i in range(k - 1):
        k_arr = np.concatenate([k_arr, np.array([farthest(k_arr, kmeans_data)])])
        class_arr.append([])

    # 迭代聚类
    n = 20
    class_temp = class_arr
    for i in range(n):  # 迭代次数
        class_temp = class_arr
        for e in kmeans_data:  # 把集合中的每一个点聚到离它最近的类
            k_idx = 0  # 假设距离第一个聚类中心最近
            min_d = distance(e, k_arr[0])
            for j in range(len(k_arr)):  # 获取距离该元素最近的聚类中心
                if distance(e, k_arr[j]) < min_d:
                    min_d = distance(e, k_arr[j])
                    k_idx = j
            class_temp[k_idx].append(e)  # 把该元素加到对应的类中
        # 更新聚类中心
        for l in range(len(k_arr)):
            k_arr[l] = means(class_temp[l])
    # 将数据可视化
    col = ['red', 'blue', 'yellow', 'green', 'pink', 'black', 'purple', 'orange', 'brown']
    for i in range(k):
        plt.scatter(k_arr[i][0], k_arr[i][1], linewidths=10, color=col[i])
        plt.scatter([e[0] for e in class_temp[i]], [e[1] for e in class_temp[i]], color=col[i])
    plt.show()
    # 返回分类好的簇
    return class_temp

4.手肘法获取最佳的k值

(1)遍历k值的范围,从1到9

(2)kmeans获取分类好的数组

(3)遍历kmeans计算对应的SSE

(4)画出对应k值的SSE的折线图

# 通过肘部观察法获取k值
def getK():
    mean_dist = []
    for k in range(1, 10):
        # 获取分成k簇后的元素
        kmeans = k_means(k)
        sse = 0
        # 计算SSE
        for i in range(len(kmeans)):
            mean = means(kmeans[i])
            for e in kmeans[i]:
                sse += distance(mean, e) ** 2
        mean_dist.append(sse)
    # 化成折线图观察最佳的k值
    plt.plot(range(1, 10), mean_dist, 'bx-')
    plt.ylabel('SSE')
    plt.xlabel('k')
    plt.show()

折线图

5. main函数

if __name__ == '__main__':
    getK()
    # 通过观察可知, 4 是最佳的k值
    k_means(4)

散点图

6. 完整代码

import matplotlib.pylab as plt
import numpy as np

# 计算两点距离
def distance(a, b):
    return np.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)

# 取集合中心点
def means(arr):
    x = 0
    y = 0
    for i in range(len(arr)):
        x += arr[i][0]
        y += arr[i][1]
    if len(arr) > 0:
        x /= len(arr)
        y /= len(arr)
    return np.array([x, y])

# 寻找距离已加入聚类中心数组最远的点,用于初始化聚类中心
def farthest(k_arr, arr):
    point = [0, 0]
    max_dist = 0
    for e in arr:
        dist = 0
        for i in range(len(k_arr)):
            dist += distance(k_arr[i], e)
        if dist > max_dist:
            max_dist = dist
            point = e
    return point

def k_means(k):
    # 读取数据
    kmeans_data = np.genfromtxt('kmeans_data.txt', dtype=float)
    # 初始化
    r = np.random.randint(len(kmeans_data) - 1)
    k_arr = np.array([kmeans_data[r]])
    class_arr = [[]]
    for i in range(k - 1):
        k_arr = np.concatenate([k_arr, np.array([farthest(k_arr, kmeans_data)])])
        class_arr.append([])

    # 迭代聚类
    n = 20
    class_temp = class_arr
    for i in range(n):  # 迭代次数
        class_temp = class_arr
        for e in kmeans_data:  # 把集合中的每一个点聚到离它最近的类
            k_idx = 0  # 假设距离第一个聚类中心最近
            min_d = distance(e, k_arr[0])
            for j in range(len(k_arr)):  # 获取距离该元素最近的聚类中心
                if distance(e, k_arr[j]) < min_d:
                    min_d = distance(e, k_arr[j])
                    k_idx = j
            class_temp[k_idx].append(e)  # 把该元素加到对应的类中
        # 更新聚类中心
        for l in range(len(k_arr)):
            k_arr[l] = means(class_temp[l])
    # 将数据可视化
    col = ['red', 'blue', 'yellow', 'green', 'pink', 'black', 'purple', 'orange', 'brown']
    for i in range(k):
        plt.scatter(k_arr[i][0], k_arr[i][1], linewidths=10, color=col[i])
        plt.scatter([e[0] for e in class_temp[i]], [e[1] for e in class_temp[i]], color=col[i])
    plt.show()
    # 返回分类好的簇
    return class_temp

# 通过肘部观察法获取k值
def getK():
    mean_dist = []
    for k in range(1, 10):
        # 获取分成k簇后的元素
        kmeans = k_means(k)
        sse = 0
        # 计算SSE
        for i in range(len(kmeans)):
            mean = means(kmeans[i])
            for e in kmeans[i]:
                sse += distance(mean, e) ** 2
        mean_dist.append(sse)
    # 化成折线图观察最佳的k值
    plt.plot(range(1, 10), mean_dist, 'bx-')
    plt.ylabel('SSE')
    plt.xlabel('k')
    plt.show()

if __name__ == '__main__':
    getK()
    # 通过观察可知, 4 是最佳的k值
    k_means(4)

总结

到此这篇关于Python如何通过手肘法实现k_means聚类的文章就介绍到这了,更多相关Python手肘法实现k_means聚类内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文