python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python曲线拟合

Python曲线拟合详解

作者:微小冷

这篇文章主要介绍了关于python曲线拟合,scipy.optimize中,curve_fit函数可调用非线性最小二乘法进行函数拟合,文中有详细的代码作为参考,需要的朋友可以阅读参考

入门

scipy.optimize中,curve_fit函数可调用非线性最小二乘法进行函数拟合,例如,现在有一个高斯函数想要被拟合

则调用方法如下

import numpy as np
from scipy.optimize import curve_fit
def gauss(x, a, b, c):
    return a*np.exp(-(x-b)**2/c**2)

x = np.arange(100)/10
y = gauss(x, 2, 5, 3) + np.random.rand(100)/10

# 非线性拟合 abc为参数;para为拟合评价
abc, para = curve_fit(gauss, x, y)
print(abc)
# [2.03042233 5.01182397 3.10994351]

其中,curve_fit在调用时输入了三个参数,分别是拟合函数、自变量、因变量。返回值abcpara分别为拟合参数和拟合的协方差,最终得到abc的值与预设的2,0.5, 3是比较接近的,其拟合效果可以画图查看一下

import matplotlib.pyplot as plt
plt.scatter(x, y, marker='.')

Y = gauss(x, *abc)
plt.plot(x, Y, lw=1)
plt.show()

效果如下

参数

curve_fit的装形式如下

curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(-inf, inf), method=None, jac=None, *, full_output=False, **kwargs)

除了f, xdata, ydata已经用过之外,其他参数的含义为

 最小二乘函数:least_squares

多元拟合

尽管curve_fit的参数列表中,只给出了xdata, ydata作为拟合参数,而xdata只有一组,但curve_fit是具备多元拟合潜力的。

唯一需要注意的是,当多元拟合函数的返回值必须为一维数组,示例如下

# 创建一个函数模型用来生成数据
def func1(x, a, b, c, d):
    r = a * np.exp(-((x[0] - b) ** 2 + (x[1] - d) ** 2) / (2 * c ** 2))
    return r.ravel()
 
# 生成原始数据
xx = np.indices([10, 10])
z = func1(xx, 10, 5, 2, 5) + np.random.normal(size=100)/100
abcd, para = curve_fit(func1, xx, z)
print(abcd)
# [10.00258587  5.00146314  1.99952885  5.00138184]

可以发现拟合结果与预设的abcd还是比较接近的,下面绘制三维图像来更加直观地查看一下

z = z.reshape(10, 10)
Z = func1(xx, *abcd).reshape(10,10)

ax = plt.subplot(projection='3d')
ax.scatter3D(xx[0], xx[1], z, color='red')
ax.plot_surface(xx[0], xx[1], Z, cmap='rainbow')
plt.show()

结果如下

到此这篇关于Python曲线拟合详解的文章就介绍到这了,更多相关Python曲线拟合内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文