Golang

关注公众号 jb51net

关闭
首页 > 脚本专栏 > Golang > Golang tinyrpc框架

Golang中tinyrpc框架的源码解读详解

作者:骑牛上青山

tinyrpc是一个高性能的基于protocol buffer的rpc框架。项目代码非常少,很适合初学者进行golang的学习。本文将从源码的角度带大家了解tinyrpc框架的使用,需要的可以参考一下

tinyrpc是一个高性能的基于protocol buffer的rpc框架。项目代码非常少,很适合初学者进行golang的学习。

tinyrpc功能

tinyrpc基于TCP协议,支持各种压缩格式,基于protocol buffer的序列化协议。其rpc是基于golang原生的net/rpc开发而成。

tinyrpc项目结构

tinyrpc基于net/rpc开发而成,在此基础上集成了额外的能力。项目结构如图:

功能目录如下:

tinyrpc源码解读

客户端和服务端构建

客户端是以net/rpcrpc.Client为基础构建,在此基础上定义了Option以配置压缩方式和序列化方式:

type Option func(o *options)

type options struct {
	compressType compressor.CompressType
	serializer   serializer.Serializer
}

在创建客户端的时候将配置好的压缩算法和序列化方式作为创建客户端的参数:

func NewClient(conn io.ReadWriteCloser, opts ...Option) *Client {
	options := options{
		compressType: compressor.Raw,
		serializer:   serializer.Proto,
	}
	for _, option := range opts {
		option(&options)
	}
	return &Client{rpc.NewClientWithCodec(
		codec.NewClientCodec(conn, options.compressType, options.serializer))}
}

服务端是以net/rpcrpc.Server为基础构建,在此基础上扩展了Server的定义:

type Server struct {
	*rpc.Server
	serializer.Serializer
}

在创建客户端和开启服务时传入序列化方式:

func NewServer(opts ...Option) *Server {
	options := options{
		serializer: serializer.Proto,
	}
	for _, option := range opts {
		option(&options)
	}

	return &Server{&rpc.Server{}, options.serializer}
}

func (s *Server) Serve(lis net.Listener) {
	log.Printf("tinyrpc started on: %s", lis.Addr().String())
	for {
		conn, err := lis.Accept()
		if err != nil {
			continue
		}
		go s.Server.ServeCodec(codec.NewServerCodec(conn, s.Serializer))
	}
}

压缩算法compressor

压缩算法的实现中首先是定义了压缩的接口:

type Compressor interface {
	Zip([]byte) ([]byte, error)
	Unzip([]byte) ([]byte, error)
}

压缩的接口包含压缩和解压方法。

压缩算法使用的是uint类型,使用iota来初始化,并且使用map来进行所有压缩算法实现的管理:

type CompressType uint16

const (
	Raw CompressType = iota
	Gzip
	Snappy
	Zlib
)

// Compressors which supported by rpc
var Compressors = map[CompressType]Compressor{
	Raw:    RawCompressor{},
	Gzip:   GzipCompressor{},
	Snappy: SnappyCompressor{},
	Zlib:   ZlibCompressor{},
}

序列化 serializer

序列化部分代码非常简单,提供了一个接口:

type Serializer interface {
	Marshal(message interface{}) ([]byte, error)
	Unmarshal(data []byte, message interface{}) error
}

目前只有ProtoSerializer一个实现,ProtoSerializer内部的实现是基于"google.golang.org/protobuf/proto"来实现的,并没有什么特殊的处理,因此就不花费笔墨详述了。

请求/响应头 header

tinyrpc定义了自己的请求头和响应头:

// RequestHeader request header structure looks like:
// +--------------+----------------+----------+------------+----------+
// | CompressType |      Method    |    ID    | RequestLen | Checksum |
// +--------------+----------------+----------+------------+----------+
// |    uint16    | uvarint+string |  uvarint |   uvarint  |  uint32  |
// +--------------+----------------+----------+------------+----------+
type RequestHeader struct {
	sync.RWMutex
	CompressType compressor.CompressType
	Method       string
	ID           uint64
	RequestLen   uint32
	Checksum     uint32
}

请求头由压缩类型,方法,id,请求长度和校验码组成。

// ResponseHeader request header structure looks like:
// +--------------+---------+----------------+-------------+----------+
// | CompressType |    ID   |      Error     | ResponseLen | Checksum |
// +--------------+---------+----------------+-------------+----------+
// |    uint16    | uvarint | uvarint+string |    uvarint  |  uint32  |
// +--------------+---------+----------------+-------------+----------+
type ResponseHeader struct {
	sync.RWMutex
	CompressType compressor.CompressType
	ID           uint64
	Error        string
	ResponseLen  uint32
	Checksum     uint32
}

响应头由压缩类型,id,错误信息,返回长度和校验码组成。

为了实现头的重用,tinyrpc为头构建了缓存池:

var (
	RequestPool  sync.Pool
	ResponsePool sync.Pool
)

func init() {
	RequestPool = sync.Pool{New: func() interface{} {
		return &RequestHeader{}
	}}
	ResponsePool = sync.Pool{New: func() interface{} {
		return &ResponseHeader{}
	}}
}

在使用时get出来,生命周期结束后放回池子,并且在put之前需要进行重置:

    h := header.RequestPool.Get().(*header.RequestHeader)
	defer func() {
		h.ResetHeader()
		header.RequestPool.Put(h)
	}()
// ResetHeader reset request header
func (r *RequestHeader) ResetHeader() {
	r.Lock()
	defer r.Unlock()
	r.ID = 0
	r.Checksum = 0
	r.Method = ""
	r.CompressType = 0
	r.RequestLen = 0
}

// ResetHeader reset response header
func (r *ResponseHeader) ResetHeader() {
	r.Lock()
	defer r.Unlock()
	r.Error = ""
	r.ID = 0
	r.CompressType = 0
	r.Checksum = 0
	r.ResponseLen = 0
}

搞清楚了头的结构以及对象池的复用逻辑,那么具体的头的编码与解码就是很简单的拆装工作,就不在此一行一行解析了,大家有兴趣可以自行去阅读。

编码 codec

由于tinyrpc是基于net/rpc开发,那么其codec模块自然也是依赖于net/rpcClientCodecServerCodec接口来实现的。

客户端实现

客户端是基于ClientCodec实现的能力:

type ClientCodec interface {
	WriteRequest(*Request, any) error
	ReadResponseHeader(*Response) error
	ReadResponseBody(any) error

	Close() error
}

client定义了一个clientCodec类型,并且实现了ClientCodec的接口方法:

type clientCodec struct {
	r io.Reader
	w io.Writer
	c io.Closer

	compressor compressor.CompressType // rpc compress type(raw,gzip,snappy,zlib)
	serializer serializer.Serializer
	response   header.ResponseHeader // rpc response header
	mutex      sync.Mutex            // protect pending map
	pending    map[uint64]string
}

WriteRequest实现:

// WriteRequest Write the rpc request header and body to the io stream
func (c *clientCodec) WriteRequest(r *rpc.Request, param interface{}) error {
	c.mutex.Lock()
	c.pending[r.Seq] = r.ServiceMethod
	c.mutex.Unlock()

	if _, ok := compressor.Compressors[c.compressor]; !ok {
		return NotFoundCompressorError
	}
	reqBody, err := c.serializer.Marshal(param)
	if err != nil {
		return err
	}
	compressedReqBody, err := compressor.Compressors[c.compressor].Zip(reqBody)
	if err != nil {
		return err
	}
	h := header.RequestPool.Get().(*header.RequestHeader)
	defer func() {
		h.ResetHeader()
		header.RequestPool.Put(h)
	}()
	h.ID = r.Seq
	h.Method = r.ServiceMethod
	h.RequestLen = uint32(len(compressedReqBody))
	h.CompressType = compressor.CompressType(c.compressor)
	h.Checksum = crc32.ChecksumIEEE(compressedReqBody)

	if err := sendFrame(c.w, h.Marshal()); err != nil {
		return err
	}
	if err := write(c.w, compressedReqBody); err != nil {
		return err
	}

	c.w.(*bufio.Writer).Flush()
	return nil
}

可以看到代码的实现还是比较清晰的,主要分为几个步骤:

ReadResponseHeader实现:

// ReadResponseHeader read the rpc response header from the io stream
func (c *clientCodec) ReadResponseHeader(r *rpc.Response) error {
	c.response.ResetHeader()
	data, err := recvFrame(c.r)
	if err != nil {
		return err
	}
	err = c.response.Unmarshal(data)
	if err != nil {
		return err
	}
	c.mutex.Lock()
	r.Seq = c.response.ID
	r.Error = c.response.Error
	r.ServiceMethod = c.pending[r.Seq]
	delete(c.pending, r.Seq)
	c.mutex.Unlock()
	return nil
}

此方法作用是读取返回的响应头,并解析成具体的结构体

ReadResponseBody实现:

func (c *clientCodec) ReadResponseBody(param interface{}) error {
	if param == nil {
		if c.response.ResponseLen != 0 {
			if err := read(c.r, make([]byte, c.response.ResponseLen)); err != nil {
				return err
			}
		}
		return nil
	}

	respBody := make([]byte, c.response.ResponseLen)
	err := read(c.r, respBody)
	if err != nil {
		return err
	}

	if c.response.Checksum != 0 {
		if crc32.ChecksumIEEE(respBody) != c.response.Checksum {
			return UnexpectedChecksumError
		}
	}

	if c.response.GetCompressType() != c.compressor {
		return CompressorTypeMismatchError
	}

	resp, err := compressor.Compressors[c.response.GetCompressType()].Unzip(respBody)
	if err != nil {
		return err
	}

	return c.serializer.Unmarshal(resp, param)
}

此方法是用于读取返回的响应结构体,流程如下:

服务端实现

服务端是基于ServerCodec实现的能力:

type ServerCodec interface {
	ReadRequestHeader(*Request) error
	ReadRequestBody(any) error
	WriteResponse(*Response, any) error

	// Close can be called multiple times and must be idempotent.
	Close() error
}

和客户端类似,server定义了一个serverCodec类型,并且实现了ServerCodec的接口方法:

type serverCodec struct {
	r io.Reader
	w io.Writer
	c io.Closer

	request    header.RequestHeader
	serializer serializer.Serializer
	mutex      sync.Mutex // protects seq, pending
	seq        uint64
	pending    map[uint64]*reqCtx
}

ReadRequestHeader实现:

// ReadRequestHeader read the rpc request header from the io stream
func (s *serverCodec) ReadRequestHeader(r *rpc.Request) error {
	s.request.ResetHeader()
	data, err := recvFrame(s.r)
	if err != nil {
		return err
	}
	err = s.request.Unmarshal(data)
	if err != nil {
		return err
	}
	s.mutex.Lock()
	s.seq++
	s.pending[s.seq] = &reqCtx{s.request.ID, s.request.GetCompressType()}
	r.ServiceMethod = s.request.Method
	r.Seq = s.seq
	s.mutex.Unlock()
	return nil
}

此方法用于读取请求头并解析成结构体

ReadRequestBody实现:

// ReadRequestBody read the rpc request body from the io stream
func (s *serverCodec) ReadRequestBody(param interface{}) error {
	if param == nil {
		if s.request.RequestLen != 0 {
			if err := read(s.r, make([]byte, s.request.RequestLen)); err != nil {
				return err
			}
		}
		return nil
	}

	reqBody := make([]byte, s.request.RequestLen)

	err := read(s.r, reqBody)
	if err != nil {
		return err
	}

	if s.request.Checksum != 0 {
		if crc32.ChecksumIEEE(reqBody) != s.request.Checksum {
			return UnexpectedChecksumError
		}
	}

	if _, ok := compressor.
		Compressors[s.request.GetCompressType()]; !ok {
		return NotFoundCompressorError
	}

	req, err := compressor.
		Compressors[s.request.GetCompressType()].Unzip(reqBody)
	if err != nil {
		return err
	}

	return s.serializer.Unmarshal(req, param)
}

此方法用于读取请求体,流程和读取响应体差不多,大致如下:

WriteResponse实现:

// WriteResponse Write the rpc response header and body to the io stream
func (s *serverCodec) WriteResponse(r *rpc.Response, param interface{}) error {
	s.mutex.Lock()
	reqCtx, ok := s.pending[r.Seq]
	if !ok {
		s.mutex.Unlock()
		return InvalidSequenceError
	}
	delete(s.pending, r.Seq)
	s.mutex.Unlock()

	if r.Error != "" {
		param = nil
	}
	if _, ok := compressor.
		Compressors[reqCtx.compareType]; !ok {
		return NotFoundCompressorError
	}

	var respBody []byte
	var err error
	if param != nil {
		respBody, err = s.serializer.Marshal(param)
		if err != nil {
			return err
		}
	}

	compressedRespBody, err := compressor.
		Compressors[reqCtx.compareType].Zip(respBody)
	if err != nil {
		return err
	}
	h := header.ResponsePool.Get().(*header.ResponseHeader)
	defer func() {
		h.ResetHeader()
		header.ResponsePool.Put(h)
	}()
	h.ID = reqCtx.requestID
	h.Error = r.Error
	h.ResponseLen = uint32(len(compressedRespBody))
	h.Checksum = crc32.ChecksumIEEE(compressedRespBody)
	h.CompressType = reqCtx.compareType

	if err = sendFrame(s.w, h.Marshal()); err != nil {
		return err
	}

	if err = write(s.w, compressedRespBody); err != nil {
		return err
	}
	s.w.(*bufio.Writer).Flush()
	return nil
}

此方法用于写入响应体,大致与写入请求体差不多,流程如下:

总结

tinyrpc是基于golang原生的net/rpc包实现,在此基础上实现了压缩和序列化等能力扩展。整体来看tinyrpc的代码非常简单,比较适合刚接触golang的程序员来进行阅读学习,学习一些golang的基础的开发技巧和一些语言特性。

以上就是Golang中tinyrpc框架的源码解读详解的详细内容,更多关于Golang tinyrpc框架的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文