python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Numpy 数据处理 ndarray

Numpy 数据处理 ndarray使用详解

作者:ZacheryZHANG

这篇文章主要为大家介绍了Numpy 数据处理 ndarray使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

1. ndarray的属性

数组的属性反映了数组本身固有的信息。常用的查看数组属性的相关语法如下表格所示:

属性名称属性解释
ndarray.shape数组维度的元组
ndarray.ndim数组维数
ndarray.size数组中的元素数量
ndarray.itemsize一个数组元素的长度(字节)
ndarray.dtype数组元素的类型

下面,我们将针对ndarray的各种属性,进行代码演示。

代码演示如下所示:

import numpy as np
score = np.array([[1, 2, 3], [4, 5, 6], [1, 1, 1], [2, 2, 2]])
print(score.shape)  # 数组维度的元组
print(score.ndim)  # 数组维数
print(score.size)    # 数组中的元素数量
print(score.itemsize)  # 一个数组元素的长度(字节)
print(score.dtype)  # 数组元素的类型

代码运行结果如下图所示:

注意:关于数组的维度,想知道数组有几维,最简单的办法就是看数组最外侧有多少个中括号,以上代码中传入的数组score有两个中括号,因此数组维数为2。

2. 数组的形状

关于数组形状,我们直接附上一段代码来理解:

c = np.array([[[1, 2, 3], [4, 5, 6], [1, 1, 1], [2, 2, 2]], [[1, 2, 3], [4, 5, 6], [1, 1, 1], [2, 2, 2]]])
print("c的数组维度:", c.shape)

以上代码运行结果如下图所示:

此处,输出的结果(2,4,3)(2,4,3)(2,4,3)的含义为:在最外层有2个二维数组。在二维数组里面,有4个一维数组。在一维数组里,有3个元素。

3. ndarray的类型

dtype是numpy.dtype类型,基本上之前所接触过的数据类型,这里面都支持。例如,bool、int32、int64、float32、uint8、complex64等等。

在我们创建array的同时是可以指定数组ndarray类型的。具体语法如下所示:

a = np.array([[[1, 2, 3], [4, 5, 6], [1, 1, 1], [2, 2, 2]], [[1, 2, 3], [4, 5, 6], [1, 1, 1], [2, 2, 2]]], dtype=np.float32)
print(a.dtype)
print(a)

代码运行结果如下图所示:可以发现结果中的数组元素带有小数点了。

当然,数组也可以存储字符串:

b = np.array(["python", "hello", "1"], dtype=np.string_)
print(b)

运行结果如下图所示:

以上就是Numpy 数据处理 ndarray使用详解的详细内容,更多关于Numpy 数据处理 ndarray的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文