JavaScript仿小米实现球体分解动画
作者:肥学
用过小米手机的应该见过它的垃圾清理ui界面吧,本文将利用JavaScript模拟这一界面实现球体分解动画,感兴趣的小伙伴可以学习一下
演示
用过小米手机的应该见过这个动画
它这个球体会随着垃圾的清理被例子画分解 随着这个思路我们给他改造一下实现这种效果
技术栈
首先我们使用了一些好用的js脚本来帮助我们做这件事情
- EffectComposer和three来完成我们的渲染任务。在该对象上可以添加后期处理通道,使用它来渲染场景、应用通道和输出结果。
- 轨道控制器OrbitControls.js是一个相当神奇的控件,用它可以实现场景用鼠标交互,让场景动起来,控制场景的旋转、平移,缩放。等功能
- stats大家应该都用过吧。用来事件监听的。
源码
我们介绍一下部分内容:
首先建立画布
<canvas id="canvas"></canvas>
设置粒子的颜色:
<script type="x-shader/x-fragment" id="sphere-frag"> #define TAU 6.283185307179586 uniform float u_time; varying float v_noise; void main() { vec3 color = vec3(0.); vec3 q = 1. - vec3( .9 * v_noise, .4 * v_noise, .3 * v_noise ); color = mix(q, vec3(.2, .3, .1), clamp(pow(v_noise, 2.) * 4., 0., 1.)); color = mix(color, vec3(.512, .461, .999), clamp(length(q), 0., 1.)); color *= (pow(v_noise, 3.) + .6 * pow(v_noise, 2.) + .5 * v_noise); gl_FragColor = vec4(color, 1.); } </script>
对例子扩散的处理:
说实话这块比较复杂我是参考了一些大佬的处理方法。确实感觉到自己和大佬之间的差距了。
float cnoise(vec4 P) { vec4 Pi0 = floor(P); // Integer part for indexing vec4 Pi1 = Pi0 + 1.0; // Integer part + 1 Pi0 = mod289(Pi0); Pi1 = mod289(Pi1); vec4 Pf0 = fract(P); // Fractional part for interpolation vec4 Pf1 = Pf0 - 1.0; // Fractional part - 1.0 vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); vec4 iy = vec4(Pi0.yy, Pi1.yy); vec4 iz0 = vec4(Pi0.zzzz); vec4 iz1 = vec4(Pi1.zzzz); vec4 iw0 = vec4(Pi0.wwww); vec4 iw1 = vec4(Pi1.wwww); vec4 ixy = permute(permute(ix) + iy); vec4 ixy0 = permute(ixy + iz0); vec4 ixy1 = permute(ixy + iz1); vec4 ixy00 = permute(ixy0 + iw0); vec4 ixy01 = permute(ixy0 + iw1); vec4 ixy10 = permute(ixy1 + iw0); vec4 ixy11 = permute(ixy1 + iw1); vec4 gx00 = ixy00 * (1.0 / 7.0); vec4 gy00 = floor(gx00) * (1.0 / 7.0); vec4 gz00 = floor(gy00) * (1.0 / 6.0); gx00 = fract(gx00) - 0.5; gy00 = fract(gy00) - 0.5; gz00 = fract(gz00) - 0.5; vec4 gw00 = vec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00); vec4 sw00 = step(gw00, vec4(0.0)); gx00 -= sw00 * (step(0.0, gx00) - 0.5); gy00 -= sw00 * (step(0.0, gy00) - 0.5); vec4 gx01 = ixy01 * (1.0 / 7.0); vec4 gy01 = floor(gx01) * (1.0 / 7.0); vec4 gz01 = floor(gy01) * (1.0 / 6.0); gx01 = fract(gx01) - 0.5; gy01 = fract(gy01) - 0.5; gz01 = fract(gz01) - 0.5; vec4 gw01 = vec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01); vec4 sw01 = step(gw01, vec4(0.0)); gx01 -= sw01 * (step(0.0, gx01) - 0.5); gy01 -= sw01 * (step(0.0, gy01) - 0.5); vec4 gx10 = ixy10 * (1.0 / 7.0); vec4 gy10 = floor(gx10) * (1.0 / 7.0); vec4 gz10 = floor(gy10) * (1.0 / 6.0); gx10 = fract(gx10) - 0.5; gy10 = fract(gy10) - 0.5; gz10 = fract(gz10) - 0.5; vec4 gw10 = vec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10); vec4 sw10 = step(gw10, vec4(0.0)); gx10 -= sw10 * (step(0.0, gx10) - 0.5); gy10 -= sw10 * (step(0.0, gy10) - 0.5); vec4 gx11 = ixy11 * (1.0 / 7.0); vec4 gy11 = floor(gx11) * (1.0 / 7.0); vec4 gz11 = floor(gy11) * (1.0 / 6.0); gx11 = fract(gx11) - 0.5; gy11 = fract(gy11) - 0.5; gz11 = fract(gz11) - 0.5; vec4 gw11 = vec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11); vec4 sw11 = step(gw11, vec4(0.0)); gx11 -= sw11 * (step(0.0, gx11) - 0.5); gy11 -= sw11 * (step(0.0, gy11) - 0.5); vec4 g0000 = vec4(gx00.x,gy00.x,gz00.x,gw00.x); vec4 g1000 = vec4(gx00.y,gy00.y,gz00.y,gw00.y); vec4 g0100 = vec4(gx00.z,gy00.z,gz00.z,gw00.z); vec4 g1100 = vec4(gx00.w,gy00.w,gz00.w,gw00.w); vec4 g0010 = vec4(gx10.x,gy10.x,gz10.x,gw10.x); vec4 g1010 = vec4(gx10.y,gy10.y,gz10.y,gw10.y); vec4 g0110 = vec4(gx10.z,gy10.z,gz10.z,gw10.z); vec4 g1110 = vec4(gx10.w,gy10.w,gz10.w,gw10.w); vec4 g0001 = vec4(gx01.x,gy01.x,gz01.x,gw01.x); vec4 g1001 = vec4(gx01.y,gy01.y,gz01.y,gw01.y); vec4 g0101 = vec4(gx01.z,gy01.z,gz01.z,gw01.z); vec4 g1101 = vec4(gx01.w,gy01.w,gz01.w,gw01.w); vec4 g0011 = vec4(gx11.x,gy11.x,gz11.x,gw11.x); vec4 g1011 = vec4(gx11.y,gy11.y,gz11.y,gw11.y); vec4 g0111 = vec4(gx11.z,gy11.z,gz11.z,gw11.z); vec4 g1111 = vec4(gx11.w,gy11.w,gz11.w,gw11.w); vec4 norm00 = taylorInvSqrt(vec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); g0000 *= norm00.x; g0100 *= norm00.y; g1000 *= norm00.z; g1100 *= norm00.w; vec4 norm01 = taylorInvSqrt(vec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); g0001 *= norm01.x; g0101 *= norm01.y; g1001 *= norm01.z; g1101 *= norm01.w; vec4 norm10 = taylorInvSqrt(vec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); g0010 *= norm10.x; g0110 *= norm10.y; g1010 *= norm10.z; g1110 *= norm10.w; vec4 norm11 = taylorInvSqrt(vec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); g0011 *= norm11.x; g0111 *= norm11.y; g1011 *= norm11.z; g1111 *= norm11.w; float n0000 = dot(g0000, Pf0); float n1000 = dot(g1000, vec4(Pf1.x, Pf0.yzw)); float n0100 = dot(g0100, vec4(Pf0.x, Pf1.y, Pf0.zw)); float n1100 = dot(g1100, vec4(Pf1.xy, Pf0.zw)); float n0010 = dot(g0010, vec4(Pf0.xy, Pf1.z, Pf0.w)); float n1010 = dot(g1010, vec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); float n0110 = dot(g0110, vec4(Pf0.x, Pf1.yz, Pf0.w)); float n1110 = dot(g1110, vec4(Pf1.xyz, Pf0.w)); float n0001 = dot(g0001, vec4(Pf0.xyz, Pf1.w)); float n1001 = dot(g1001, vec4(Pf1.x, Pf0.yz, Pf1.w)); float n0101 = dot(g0101, vec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); float n1101 = dot(g1101, vec4(Pf1.xy, Pf0.z, Pf1.w)); float n0011 = dot(g0011, vec4(Pf0.xy, Pf1.zw)); float n1011 = dot(g1011, vec4(Pf1.x, Pf0.y, Pf1.zw)); float n0111 = dot(g0111, vec4(Pf0.x, Pf1.yzw)); float n1111 = dot(g1111, Pf1); vec4 fade_xyzw = fade(Pf0); vec4 n_0w = mix(vec4(n0000, n1000, n0100, n1100), vec4(n0001, n1001, n0101, n1101), fade_xyzw.w); vec4 n_1w = mix(vec4(n0010, n1010, n0110, n1110), vec4(n0011, n1011, n0111, n1111), fade_xyzw.w); vec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z); vec2 n_yzw = mix(n_zw.xy, n_zw.zw, fade_xyzw.y); float n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); return 2.2 * n_xyzw; }
到此这篇关于JavaScript仿小米实现球体分解动画的文章就介绍到这了,更多相关JavaScript球体分解动画内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!