对比分析BN和dropout在预测和训练时区别
作者:微笑sun
Batch Normalization和Dropout是深度学习模型中常用的结构。
但BN和dropout在训练和测试时使用却不相同。
Batch Normalization
BN在训练时是在每个batch上计算均值和方差来进行归一化,每个batch的样本量都不大,所以每次计算出来的均值和方差就存在差异。预测时一般传入一个样本,所以不存在归一化,其次哪怕是预测一个batch,但batch计算出来的均值和方差是偏离总体样本的,所以通常是通过滑动平均结合训练时所有batch的均值和方差来得到一个总体均值和方差。
以tensorflow代码实现为例:
def bn_layer(self, inputs, training, name='bn', moving_decay=0.9, eps=1e-5): # 获取输入维度并判断是否匹配卷积层(4)或者全连接层(2) shape = inputs.shape param_shape = shape[-1] with tf.variable_scope(name): # 声明BN中唯一需要学习的两个参数,y=gamma*x+beta gamma = tf.get_variable('gamma', param_shape, initializer=tf.constant_initializer(1)) beta = tf.get_variable('beat', param_shape, initializer=tf.constant_initializer(0)) # 计算当前整个batch的均值与方差 axes = list(range(len(shape)-1)) batch_mean, batch_var = tf.nn.moments(inputs , axes, name='moments') # 采用滑动平均更新均值与方差 ema = tf.train.ExponentialMovingAverage(moving_decay, name="ema") def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var) # 训练时,更新均值与方差,测试时使用之前最后一次保存的均值与方差 mean, var = tf.cond(tf.equal(training,True), mean_var_with_update, lambda:(ema.average(batch_mean), ema.average(batch_var))) # 最后执行batch normalization return tf.nn.batch_normalization(inputs ,mean, var, beta, gamma, eps)
training参数可以通过tf.placeholder传入,这样就可以控制训练和预测时training的值。
self.training = tf.placeholder(tf.bool, name="training")
Dropout
Dropout在训练时会随机丢弃一些神经元,这样会导致输出的结果变小。而预测时往往关闭dropout,保证预测结果的一致性(不关闭dropout可能同一个输入会得到不同的输出,不过输出会服从某一分布。另外有些情况下可以不关闭dropout,比如文本生成下,不关闭会增大输出的多样性)。
为了对齐Dropout训练和预测的结果,通常有两种做法,假设dropout rate = 0.2。一种是训练时不做处理,预测时输出乘以(1 - dropout rate)。另一种是训练时留下的神经元除以(1 - dropout rate),预测时不做处理。以tensorflow为例。
x = tf.nn.dropout(x, self.keep_prob)
self.keep_prob = tf.placeholder(tf.float32, name="keep_prob")
tf.nn.dropout就是采用了第二种做法,训练时除以(1 - dropout rate),源码如下:
binary_tensor = math_ops.floor(random_tensor) ret = math_ops.div(x, keep_prob) * binary_tensor if not context.executing_eagerly(): ret.set_shape(x.get_shape()) return ret
binary_tensor就是一个mask tensor,即里面的值由0或1组成。keep_prob = 1 - dropout rate。
以上就是对比分析BN和dropout在预测和训练时区别的详细内容,更多关于BN与dropout预测训练对比的资料请关注脚本之家其它相关文章!