python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python图像分割增强

详解Python实现图像分割增强的两种方法

作者:AI浩

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。本文将为大家分享两个用Python实现像分割增强的方法,需要的可以参考一下

方法一

import random
import numpy as np
from PIL import Image, ImageOps, ImageFilter
from skimage.filters import gaussian
import torch
import math
import numbers
import random

class RandomVerticalFlip(object):
    def __call__(self, img):
        if random.random() < 0.5:
            return img.transpose(Image.FLIP_TOP_BOTTOM)
        return img

class DeNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
        for t, m, s in zip(tensor, self.mean, self.std):
            t.mul_(s).add_(m)
        return tensor

class MaskToTensor(object):
    def __call__(self, img):
        return torch.from_numpy(np.array(img, dtype=np.int32)).long()

class FreeScale(object):
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = tuple(reversed(size))  # size: (h, w)
        self.interpolation = interpolation

    def __call__(self, img):
        return img.resize(self.size, self.interpolation)

class FlipChannels(object):
    def __call__(self, img):
        img = np.array(img)[:, :, ::-1]
        return Image.fromarray(img.astype(np.uint8))

class RandomGaussianBlur(object):
    def __call__(self, img):
        sigma = 0.15 + random.random() * 1.15
        blurred_img = gaussian(np.array(img), sigma=sigma, multichannel=True)
        blurred_img *= 255
        return Image.fromarray(blurred_img.astype(np.uint8))
# 组合
class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img, mask):
        assert img.size == mask.size
        for t in self.transforms:
            img, mask = t(img, mask)
        return img, mask
# 随机裁剪
class RandomCrop(object):
    def __init__(self, size, padding=0):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding

    def __call__(self, img, mask):
        if self.padding > 0:
            img = ImageOps.expand(img, border=self.padding, fill=0)
            mask = ImageOps.expand(mask, border=self.padding, fill=0)

        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        if w == tw and h == th:
            return img, mask
        if w < tw or h < th:
            return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST)

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))

#  中心裁剪
class CenterCrop(object):
    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img, mask):
        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        x1 = int(round((w - tw) / 2.))
        y1 = int(round((h - th) / 2.))
        return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))


class RandomHorizontallyFlip(object):
    def __call__(self, img, mask):
        if random.random() < 0.5:
            return img.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(Image.FLIP_LEFT_RIGHT)
        return img, mask

class Scale(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, img, mask):
        assert img.size == mask.size
        w, h = img.size
        if (w >= h and w == self.size) or (h >= w and h == self.size):
            return img, mask
        if w > h:
            ow = self.size
            oh = int(self.size * h / w)
            return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)
        else:
            oh = self.size
            ow = int(self.size * w / h)
            return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)

class RandomSizedCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, img, mask):
        assert img.size == mask.size
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.45, 1.0) * area
            aspect_ratio = random.uniform(0.5, 2)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                mask = mask.crop((x1, y1, x1 + w, y1 + h))
                assert (img.size == (w, h))

                return img.resize((self.size, self.size), Image.BILINEAR), mask.resize((self.size, self.size),
                                                                                       Image.NEAREST)

        # Fallback
        scale = Scale(self.size)
        crop = CenterCrop(self.size)
        return crop(*scale(img, mask))

class RandomRotate(object):
    def __init__(self, degree):
        self.degree = degree

    def __call__(self, img, mask):
        rotate_degree = random.random() * 2 * self.degree - self.degree
        return img.rotate(rotate_degree, Image.BILINEAR), mask.rotate(rotate_degree, Image.NEAREST)

class RandomSized(object):
    def __init__(self, size):
        self.size = size
        self.scale = Scale(self.size)
        self.crop = RandomCrop(self.size)

    def __call__(self, img, mask):
        assert img.size == mask.size

        w = int(random.uniform(0.5, 2) * img.size[0])
        h = int(random.uniform(0.5, 2) * img.size[1])

        img, mask = img.resize((w, h), Image.BILINEAR), mask.resize((w, h), Image.NEAREST)

        return self.crop(*self.scale(img, mask))

class SlidingCropOld(object):
    def __init__(self, crop_size, stride_rate, ignore_label):
        self.crop_size = crop_size
        self.stride_rate = stride_rate
        self.ignore_label = ignore_label

    def _pad(self, img, mask):
        h, w = img.shape[: 2]
        pad_h = max(self.crop_size - h, 0)
        pad_w = max(self.crop_size - w, 0)
        img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
        mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label)
        return img, mask

    def __call__(self, img, mask):
        assert img.size == mask.size

        w, h = img.size
        long_size = max(h, w)

        img = np.array(img)
        mask = np.array(mask)

        if long_size > self.crop_size:
            stride = int(math.ceil(self.crop_size * self.stride_rate))
            h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1
            w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1
            img_sublist, mask_sublist = [], []
            for yy in range(h_step_num):
                for xx in range(w_step_num):
                    sy, sx = yy * stride, xx * stride
                    ey, ex = sy + self.crop_size, sx + self.crop_size
                    img_sub = img[sy: ey, sx: ex, :]
                    mask_sub = mask[sy: ey, sx: ex]
                    img_sub, mask_sub = self._pad(img_sub, mask_sub)
                    img_sublist.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB'))
                    mask_sublist.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P'))
            return img_sublist, mask_sublist
        else:
            img, mask = self._pad(img, mask)
            img = Image.fromarray(img.astype(np.uint8)).convert('RGB')
            mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
            return img, mask


class SlidingCrop(object):
    def __init__(self, crop_size, stride_rate, ignore_label):
        self.crop_size = crop_size
        self.stride_rate = stride_rate
        self.ignore_label = ignore_label

    def _pad(self, img, mask):
        h, w = img.shape[: 2]
        pad_h = max(self.crop_size - h, 0)
        pad_w = max(self.crop_size - w, 0)
        img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
        mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label)
        return img, mask, h, w

    def __call__(self, img, mask):
        assert img.size == mask.size

        w, h = img.size
        long_size = max(h, w)

        img = np.array(img)
        mask = np.array(mask)

        if long_size > self.crop_size:
            stride = int(math.ceil(self.crop_size * self.stride_rate))
            h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1
            w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1
            img_slices, mask_slices, slices_info = [], [], []
            for yy in range(h_step_num):
                for xx in range(w_step_num):
                    sy, sx = yy * stride, xx * stride
                    ey, ex = sy + self.crop_size, sx + self.crop_size
                    img_sub = img[sy: ey, sx: ex, :]
                    mask_sub = mask[sy: ey, sx: ex]
                    img_sub, mask_sub, sub_h, sub_w = self._pad(img_sub, mask_sub)
                    img_slices.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB'))
                    mask_slices.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P'))
                    slices_info.append([sy, ey, sx, ex, sub_h, sub_w])
            return img_slices, mask_slices, slices_info
        else:
            img, mask, sub_h, sub_w = self._pad(img, mask)
            img = Image.fromarray(img.astype(np.uint8)).convert('RGB')
            mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
            return [img], [mask], [[0, sub_h, 0, sub_w, sub_h, sub_w]]

方法二

import numpy as np
import random

import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F


def pad_if_smaller(img, size, fill=0):
    # 如果图像最小边长小于给定size,则用数值fill进行padding
    min_size = min(img.size)
    if min_size < size:
        ow, oh = img.size
        padh = size - oh if oh < size else 0
        padw = size - ow if ow < size else 0
        img = F.pad(img, (0, 0, padw, padh), fill=fill)
    return img


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target


class RandomResize(object):
    def __init__(self, min_size, max_size=None):
        self.min_size = min_size
        if max_size is None:
            max_size = min_size
        self.max_size = max_size

    def __call__(self, image, target):
        size = random.randint(self.min_size, self.max_size)
        # 这里size传入的是int类型,所以是将图像的最小边长缩放到size大小
        image = F.resize(image, size)
        # 这里的interpolation注意下,在torchvision(0.9.0)以后才有InterpolationMode.NEAREST
        # 如果是之前的版本需要使用PIL.Image.NEAREST
        target = F.resize(target, size, interpolation=T.InterpolationMode.NEAREST)
        return image, target


class RandomHorizontalFlip(object):
    def __init__(self, flip_prob):
        self.flip_prob = flip_prob

    def __call__(self, image, target):
        if random.random() < self.flip_prob:
            image = F.hflip(image)
            target = F.hflip(target)
        return image, target


class RandomCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, image, target):
        image = pad_if_smaller(image, self.size)
        target = pad_if_smaller(target, self.size, fill=255)
        crop_params = T.RandomCrop.get_params(image, (self.size, self.size))
        image = F.crop(image, *crop_params)
        target = F.crop(target, *crop_params)
        return image, target


class CenterCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, image, target):
        image = F.center_crop(image, self.size)
        target = F.center_crop(target, self.size)
        return image, target


class ToTensor(object):
    def __call__(self, image, target):
        image = F.to_tensor(image)
        target = torch.as_tensor(np.array(target), dtype=torch.int64)
        return image, target


class Normalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, image, target):
        image = F.normalize(image, mean=self.mean, std=self.std)
        return image, target

到此这篇关于详解Python实现图像分割增强的两种方法的文章就介绍到这了,更多相关Python图像分割增强内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文