java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java 二叉搜索树

Java深入了解数据结构之二叉搜索树增 插 删 创详解

作者:/少司命

二叉搜索树是以一棵二叉树来组织的。每个节点是一个对象,包含的属性有left,right,p和key,其中,left指向该节点的左孩子,right指向该节点的右孩子,p指向该节点的父节点,key是它的值

①概念

二叉搜索树又称二叉排序树,它或者是一棵空树**,或者是具有以下性质的二叉树:

若它的左子树不为空,则左子树上所有节点的值都小于根节点的值

若它的右子树不为空,则右子树上所有节点的值都大于根节点的值

它的左右子树也分别为二叉搜索树

②操作-查找

二叉搜索树的查找类似于二分法查找

public Node search(int key) {
        Node cur = root;
        while (cur != null) {
            if(cur.val == key) {
                return cur;
            }else if(cur.val < key) {
                cur = cur.right;
            }else {
                cur = cur.left;
            }
        }
        return null;
    }

③操作-插入

  public boolean insert(int key) {
        Node node = new Node(key);
        if(root == null) {
            root = node;
            return true;
        }
 
        Node cur = root;
        Node parent = null;
 
        while(cur != null) {
            if(cur.val == key) {
                return false;
            }else if(cur.val < key) {
                parent = cur;
                cur = cur.right;
            }else {
                parent = cur;
                cur = cur.left;
            }
        }
        //parent
        if(parent.val > key) {
            parent.left = node;
        }else {
            parent.right = node;
        }
 
        return true;
    }

④操作-删除

删除操作较为复杂,但理解了其原理还是比较容易

设待删除结点为 cur, 待删除结点的双亲结点为 parent

1. cur.left == null

1. cur 是 root,则 root = cur.right

2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.right

3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.right

2. cur.right == null

1. cur 是 root,则 root = cur.left

2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.left

3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.left

第二种情况和第一种情况相同,只是方向相反,这里不再画图

3. cur.left != null && cur.right != null

需要使用替换法进行删除,即在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题

当我们在左右子树都不为空的情况下进行删除,删除该节点会破坏树的结构,因此用替罪羊的方法来解决,实际删除的过程还是上面的两种情况,这里还是用到了搜索二叉树的性质

public void remove(Node parent,Node cur) {
        if(cur.left == null) {
            if(cur == root) {
                root = cur.right;
            }else if(cur == parent.left) {
                parent.left = cur.right;
            }else {
                parent.right = cur.right;
            }
        }else if(cur.right == null) {
            if(cur == root) {
                root = cur.left;
            }else if(cur == parent.left) {
                parent.left = cur.left;
            }else {
                parent.right = cur.left;
            }
        }else {
            Node targetParent =  cur;
            Node target = cur.right;
            while (target.left != null) {
                targetParent = target;
                target = target.left;
            }
            cur.val = target.val;
            if(target == targetParent.left) {
                targetParent.left = target.right;
            }else {
                targetParent.right = target.right;
            }
        }
    }
 
  public void removeKey(int key) {
        if(root == null) {
            return;
        }
        Node cur = root;
        Node parent = null;
        while (cur != null) {
            if(cur.val == key) {
                remove(parent,cur);
                return;
            }else if(cur.val < key){
                parent = cur;
                cur = cur.right;
            }else {
                parent = cur;
                cur = cur.left;
            }
        }
    }

⑤性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度 的函数,即结点越深,则比较次数越多。

但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:

最差情况下,二叉搜索树退化为单支树,其平均比较次数为:

⑥完整代码

public class TextDemo {
 
    public static class Node {
        public int val;
        public Node left;
        public Node right;
 
        public Node (int val) {
            this.val = val;
        }
    }
 
 
    public Node root;
 
    /**
     * 查找
     * @param key
     */
    public Node search(int key) {
        Node cur = root;
        while (cur != null) {
            if(cur.val == key) {
                return cur;
            }else if(cur.val < key) {
                cur = cur.right;
            }else {
                cur = cur.left;
            }
        }
        return null;
    }
 
    /**
     *
     * @param key
     * @return
     */
    public boolean insert(int key) {
        Node node = new Node(key);
        if(root == null) {
            root = node;
            return true;
        }
 
        Node cur = root;
        Node parent = null;
 
        while(cur != null) {
            if(cur.val == key) {
                return false;
            }else if(cur.val < key) {
                parent = cur;
                cur = cur.right;
            }else {
                parent = cur;
                cur = cur.left;
            }
        }
        //parent
        if(parent.val > key) {
            parent.left = node;
        }else {
            parent.right = node;
        }
 
        return true;
    }
 
    public void remove(Node parent,Node cur) {
        if(cur.left == null) {
            if(cur == root) {
                root = cur.right;
            }else if(cur == parent.left) {
                parent.left = cur.right;
            }else {
                parent.right = cur.right;
            }
        }else if(cur.right == null) {
            if(cur == root) {
                root = cur.left;
            }else if(cur == parent.left) {
                parent.left = cur.left;
            }else {
                parent.right = cur.left;
            }
        }else {
            Node targetParent =  cur;
            Node target = cur.right;
            while (target.left != null) {
                targetParent = target;
                target = target.left;
            }
            cur.val = target.val;
            if(target == targetParent.left) {
                targetParent.left = target.right;
            }else {
                targetParent.right = target.right;
            }
        }
    }
 
    public void removeKey(int key) {
        if(root == null) {
            return;
        }
        Node cur = root;
        Node parent = null;
        while (cur != null) {
            if(cur.val == key) {
                remove(parent,cur);
                return;
            }else if(cur.val < key){
                parent = cur;
                cur = cur.right;
            }else {
                parent = cur;
                cur = cur.left;
            }
        }
    }
 
}

到此这篇关于Java深入了解数据结构之二叉搜索树增 插 删 创详解的文章就介绍到这了,更多相关Java 二叉搜索树内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文