java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > 二叉搜索树的基本操作

Java基础之二叉搜索树的基本操作

作者:保护眼睛

发现许多小伙伴还不清楚Java二叉搜索树的基本操作,今天特地整理了这篇文章,文中有非常详细的代码示例,对正在学习Java的小伙伴很有帮助,需要的朋友可以参考下

一、二叉搜索树插入元素

/**
 * user:ypc;
 * date:2021-05-18;
 * time: 15:09;
 */
     class Node {
        int val;
        Node left;
        Node right;

        Node(int val) {
            this.val = val;
        }
    }
    public void insert(int key) {
        Node node = new Node(key);
        if (this.root == null) {
            root = node;
        }
        Node cur = root;
        Node parent = null;
        while (cur != null) {
            if (cur.val == key) {
                //System.out.println("元素已经存在");
                return;
            } else if (cur.val > key) {
                parent = cur;
                cur = cur.left;
            } else {
                parent = cur;
                cur = cur.right;
            }
        }
        if (key > parent.val) {
            parent.right = node;
        } else {
            parent.left = node;
        }

    }

二、搜索指定节点

 public boolean search(int key) {
        Node cur = root;
        while (cur != null) {
            if (cur.val == key) {
                return true;
            } else if (cur.val > key) {
                cur = cur.left;
            } else {
                cur = cur.right;
            }
        }

        return false;
    }

三、删除节点方式一

 public void removenode1(Node parent, Node cur) {
        if (cur.left == null) {
            if (cur == root) {
                root = cur.right;
            } else if (cur == parent.right) {
                parent.left = cur.right;
            } else {
                parent.right = cur.right;
            }
        } else if (cur.right == null) {
            if (cur == root) {
                root.left = cur;
            } else if (cur == parent.right) {
                parent.right = cur.left;
            } else {
                parent.left = cur.left;
            }
        } else {
            Node tp = cur;
            Node t = cur.right;
            while (t.left != null) {
                tp = t;
                t = t.left;
            }
            if (tp.left == t) {
                cur.val = t.val;
                tp.left = t.right;
            }
            if (tp.right == t) {
                cur.val = t.val;
                tp.right = t.right;
            }
        }

    }

    public void remove(int key) {
        Node cur = root;
        Node parent = null;
        while (cur != null) {
            if (cur.val == key) {
                removenode1(parent, cur);
              //removenode2(parent, cur);
                return;
            } else if (key > cur.val) {
                parent = cur;
                cur = cur.right;
            } else {
                parent = cur;
                cur = cur.left;
            }
        }
    }
  

四、删除节点方式二

 public void removenode2(Node parent, Node cur) {

        if (cur.left == null) {
            if (cur == root) {
                root = cur.right;
            } else if (cur == parent.right) {
                parent.left = cur.right;
            } else {
                parent.right = cur.right;
            }
        } else if (cur.right == null) {
            if (cur == root) {
                root.left = cur;
            } else if (cur == parent.right) {
                parent.right = cur.left;
            } else {
                parent.left = cur.left;
            }
        } else {
            Node tp = cur;
            Node t = cur.left;
            while (t.right != null) {
                tp = t;
                t = t.right;
            }
            if (tp.right == t) {
                cur.val = t.val;
                tp.right = t.left;
            }
            if (tp.left == t) {
                cur.val = t.val;
                tp.left = t.left;
            }
        }

    }

五、运行结果

 /**
 * user:ypc;
 * date:2021-05-18;
 * time: 15:09;
 */
class TestBinarySearchTree {
    public static void main(String[] args) {
        int a[] = {5, 3, 4, 1, 7, 8, 2, 6, 0, 9};
        BinarySearchTree binarySearchTree = new BinarySearchTree();
        for (int i = 0; i < a.length; i++) {
            binarySearchTree.insert(a[i]);
        }
        binarySearchTree.inOrderTree(binarySearchTree.root);
        System.out.println();
        binarySearchTree.preOrderTree(binarySearchTree.root);
        binarySearchTree.remove(7);
        System.out.println();
        System.out.println("方法一删除后");
        binarySearchTree.inOrderTree(binarySearchTree.root);
        System.out.println();
        binarySearchTree.preOrderTree(binarySearchTree.root);
    }
}

在这里插入图片描述
在这里插入图片描述

到此这篇关于Java基础之二叉搜索树的基本操作的文章就介绍到这了,更多相关二叉搜索树的基本操作内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文