java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java冒泡,选择和插入排序算法

Java数据结构和算法之冒泡,选择和插入排序算法

作者:YSOcean

这篇文章主要为大家介绍了Java冒泡,选择和插入排序算法 ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助

1、冒泡排序

这个名词的由来很好理解,一般河水中的冒泡,水底刚冒出来的时候是比较小的,随着慢慢向水面浮起会逐渐增大,这物理规律我不作过多解释,大家只需要了解即可。

冒泡算法的运作规律如下:

①、比较相邻的元素。如果第一个比第二个大,就交换他们两个。

②、对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数(也就是第一波冒泡完成)。

③、针对所有的元素重复以上的步骤,除了最后一个。

④、持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

  

  

代码如下:

package com.ys.sort;
public class BubbleSort {
    public static int[] sort(int[] array){
        //这里for循环表示总共需要比较多少轮
        for(int i = 1 ; i < array.length; i++){
            //设定一个标记,若为true,则表示此次循环没有进行交换,也就是待排序列已经有序,排序已经完成。
            boolean flag = true;
            //这里for循环表示每轮比较参与的元素下标
            //对当前无序区间array[0......length-i]进行排序
            //j的范围很关键,这个范围是在逐步缩小的,因为每轮比较都会将最大的放在右边
            for(int j = 0 ; j < array.length-i ; j++){
                if(array[j]>array[j+1]){
                    int temp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = temp;
                    flag = false;
                }
            }
            if(flag){
                break;
            }
            //第 i轮排序的结果为
            System.out.print("第"+i+"轮排序后的结果为:");
            display(array);
        }
        return array;
    }
    //遍历显示数组
    public static void display(int[] array){
        for(int i = 0 ; i < array.length ; i++){
            System.out.print(array[i]+" ");
        }
        System.out.println();
    }
    public static void main(String[] args) {
        int[] array = {4,2,8,9,5,7,6,1,3};
        //未排序数组顺序为
        System.out.println("未排序数组顺序为:");
        display(array);
        System.out.println("-----------------------");
        array = sort(array);
        System.out.println("-----------------------");
        System.out.println("经过冒泡排序后的数组顺序为:");
        display(array);
    }
}

结果如下:

  

本来应该是 8 轮排序的,这里我们只进行了 7 轮排序,因为第 7 轮排序之后已经是有序数组了。

冒泡排序解释:

冒泡排序是由两个for循环构成,第一个for循环的变量 i 表示总共需要多少轮比较,第二个for循环的变量 j 表示每轮参与比较的元素下标【0,1,......,length-i】,因为每轮比较都会出现一个最大值放在最右边,所以每轮比较后的元素个数都会少一个,这也是为什么 j 的范围是逐渐减小的。相信大家理解之后快速写出一个冒泡排序并不难。

冒泡排序性能分析:

假设参与比较的数组元素个数为 N,则第一轮排序有 N-1 次比较,第二轮有 N-2 次,如此类推,这种序列的求和公式为:

  (N-1)+(N-2)+...+1 = N*(N-1)/2

当 N 的值很大时,算法比较次数约为 N2/2次比较,忽略减1。

假设数据是随机的,那么每次比较可能要交换位置,可能不会交换,假设概率为50%,那么交换次数为N2/4。不过如果是最坏的情况,初始数据是逆序的,那么每次比较都要交换位置。

交换和比较次数都和N2 成正比。由于常数不算大 O 表示法中,忽略 2 和 4,那么冒泡排序运行都需要 O(N2) 时间级别。

其实无论何时,只要看见一个循环嵌套在另一个循环中,我们都可以怀疑这个算法的运行时间为 O(N2)级,外层循环执行 N 次,内层循环对每一次外层循环都执行N次(或者几分之N次)。这就意味着大约需要执行N2次某个基本操作。  

2、选择排序

选择排序是每一次从待排序的数据元素中选出最小的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

分为三步:

  

  

代码如下:

package com.ys.sort;
public class ChoiceSort {
    public static int[] sort(int[] array){
        //总共要经过N-1轮比较
        for(int i = 0 ; i < array.length-1 ; i++){
            int min = i;
            //每轮需要比较的次数
            for(int j = i+1 ; j < array.length ; j++){
                if(array[j]<array[min]){
                    min = j;//记录目前能找到的最小值元素的下标
                }
            }
            //将找到的最小值和i位置所在的值进行交换
            if(i != min){
                int temp = array[i];
                array[i] = array[min];
                array[min] = temp;
            }
            //第 i轮排序的结果为
            System.out.print("第"+(i+1)+"轮排序后的结果为:");
            display(array);
        }
        return array;
    }
    //遍历显示数组
    public static void display(int[] array){
        for(int i = 0 ; i < array.length ; i++){
            System.out.print(array[i]+" ");
        }
        System.out.println();
    }
    public static void main(String[] args){
        int[] array = {4,2,8,9,5,7,6,1,3};
        //未排序数组顺序为
        System.out.println("未排序数组顺序为:");
        display(array);
        System.out.println("-----------------------");
        array = sort(array);
        System.out.println("-----------------------");
        System.out.println("经过选择排序后的数组顺序为:");
        display(array);
    }
}

运行结果:  

选择排序性能分析:

选择排序和冒泡排序执行了相同次数的比较:N*(N-1)/2,但是至多只进行了N次交换。

当 N 值很大时,比较次数是主要的,所以和冒泡排序一样,用大O表示是O(N2) 时间级别。但是由于选择排序交换的次数少,所以选择排序无疑是比冒泡排序快的。当 N 值较小时,如果交换时间比选择时间大的多,那么选择排序是相当快的。

3、插入排序

直接插入排序基本思想是每一步将一个待排序的记录,插入到前面已经排好序的有序序列中去,直到插完所有元素为止。

插入排序还分为直接插入排序、二分插入排序、链表插入排序、希尔排序等等,这里我们只是以直接插入排序讲解,后面讲高级排序的时候会将其他的。

  

代码如下:

package com.ys.sort;
public class InsertSort {
    public static int[] sort(int[] array){
        int j;
        //从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的
        for(int i = 1 ; i < array.length ; i++){
            int tmp = array[i];//记录要插入的数据
            j = i;
            while(j > 0 && tmp < array[j-1]){//从已经排序的序列最右边的开始比较,找到比其小的数
                array[j] = array[j-1];//向后挪动
                j--;
            }
            array[j] = tmp;//存在比其小的数,插入
        }
        return array;
    }
    //遍历显示数组
    public static void display(int[] array){
        for(int i = 0 ; i < array.length ; i++){
            System.out.print(array[i]+" ");
        }
        System.out.println();
    }
    public static void main(String[] args){
        int[] array = {4,2,8,9,5,7,6,1,3};
        //未排序数组顺序为
        System.out.println("未排序数组顺序为:");
        display(array);
        System.out.println("-----------------------");
        array = sort(array);
        System.out.println("-----------------------");
        System.out.println("经过插入排序后的数组顺序为:");
        display(array);
    }
}

运行结果:  

插入排序性能分析:

在第一轮排序中,它最多比较一次,第二轮最多比较两次,一次类推,第N轮,最多比较N-1次。因此有1+2+3+...+N-1 =N*(N-1)/2。

假设在每一轮排序发现插入点时,平均只有全体数据项的一半真的进行了比较,我们除以2得到:N*(N-1)/4。用大O表示法大致需要需要 O(N2) 时间级别。

复制的次数大致等于比较的次数,但是一次复制与一次交换的时间耗时不同,所以相对于随机数据,插入排序比冒泡快一倍,比选择排序略快。

这里需要注意的是,如果要进行逆序排列,那么每次比较和移动都会进行,这时候并不会比冒泡排序快。

4、总结

上面讲的三种排序,冒泡、选择、插入用大 O 表示法都需要O(N2) 时间级别。一般不会选择冒泡排序,虽然冒泡排序书写是最简单的,但是平均性能是没有选择排序和插入排序好的。

选择排序把交换次数降低到最低,但是比较次数还是挺大的。当数据量小,并且交换数据相对于比较数据更加耗时的情况下,可以应用选择排序。

在大多数情况下,假设数据量比较小或基本有序时,插入排序是三种算法中最好的选择。

后面我们会讲解高级排序,大O表示法的时间级别将比O(N2)小。 

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注脚本之家的更多内容!

您可能感兴趣的文章:
阅读全文