R语言

关注公众号 jb51net

关闭
首页 > 软件编程 > R语言 > R语言 岭回归

R语言实现岭回归的示例代码

作者:一天_pika

本文主要介绍了R语言实现岭回归的示例代码,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

岭参数的一般选择原则

image

用R语言进行岭回归

这里使用MASS包中的longley数据集,进行岭回归分析(longley数据集中的变量具有显著的多重共线性)。从而分析使用岭回归进行多重共线性的解决。

image

首相将longley数据集中的第一列数据命名为“y”,并使用岭回归创建线性模型

image

显示当y为因变量,其余各个变量为自变量时,直接构建线性模型的统计结果如下:

image

可见,虽然线性回归的Multiple R-squared: 0.9926是一个很高的值。但各个变量的显著性检验却很差,同样说明直接使用线性模型的拟合效果并不是很理想。

制定岭参数lamdba从0-0.1,每次变化的长度为0.001,并绘制岭迹图,如下:

image

详细岭回归的岭迹图如下:

image

从岭迹图中可以看出,当lambda=0时,图像不稳定。因此,可以说明这里的变量存在多重共线性。

现在需要对岭参数lambda进行选择:

image

可以看出,这里由于使用了不同的估计方法,从而可以得到几个不同的岭参数的估计。通常取GCV估计,或者结合几个结果进行取值。这里取lambda=0.006。

使用R的ridge包的时候,出现如下问题:

image

岭回归的问题

到此这篇关于R语言实现岭回归的示例代码的文章就介绍到这了,更多相关R语言 岭回归内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文