R语言

关注公众号 jb51net

关闭
首页 > 软件编程 > R语言 > R语言逻辑回归

R语言中逻辑回归知识点总结

作者:w3cschool

在本篇文章里小编给大家总结了关于R语言中逻辑回归知识点相关内容,有需要的朋友们跟着学习下。

逻辑回归是回归模型,其中响应变量(因变量)具有诸如True / False或0/1的分类值。 它实际上基于将其与预测变量相关的数学方程测量二元响应的概率作为响应变量的值。

逻辑回归的一般数学方程为

y = 1/(1+e^-(a+b1x1+b2x2+b3x3+...))

以下是所使用的参数的描述 

用于创建回归模型的函数是glm()函数。

语法

逻辑回归中glm()函数的基本语法是

glm(formula,data,family)

以下是所使用的参数的描述 

内置数据集“mtcars”描述具有各种发动机规格的汽车的不同型号。 在“mtcars”数据集中,传输模式(自动或手动)由am列描述,它是一个二进制值(0或1)。 我们可以在列“am”和其他3列(hp,wt和cyl)之间创建逻辑回归模型。

# Select some columns form mtcars.
input <- mtcars[,c("am","cyl","hp","wt")]

print(head(input))

当我们执行上面的代码,它产生以下结果

                  am   cyl  hp    wt
Mazda RX4          1   6    110   2.620
Mazda RX4 Wag      1   6    110   2.875
Datsun 710         1   4     93   2.320
Hornet 4 Drive     0   6    110   3.215
Hornet Sportabout  0   8    175   3.440
Valiant            0   6    105   3.460

创建回归模型

我们使用glm()函数创建回归模型,并得到其摘要进行分析。

input <- mtcars[,c("am","cyl","hp","wt")]

am.data = glm(formula = am ~ cyl + hp + wt, data = input, family = binomial)

print(summary(am.data))

当我们执行上面的代码,它产生以下结果

Call:
glm(formula = am ~ cyl + hp + wt, family = binomial, data = input)

Deviance Residuals: 
     Min        1Q      Median        3Q       Max  
-2.17272    0.14907 0.01464     0.14116   1.27641  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept) 19.70288    8.11637   2.428   0.0152 *
cyl          0.48760    1.07162   0.455   0.6491  
hp           0.03259    0.01886   1.728   0.0840 .
wt         9.14947    4.15332 2.203   0.0276 *
---
Signif. codes:  0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 43.2297  on 31  degrees of freedom
Residual deviance:  9.8415  on 28  degrees of freedom
AIC: 17.841

Number of Fisher Scoring iterations: 8

结论

在总结中,对于变量“cyl”和“hp”,最后一列中的p值大于0.05,我们认为它们对变量“am”的值有贡献是无关紧要的。 只有重量(wt)影响该回归模型中的“am”值。

到此这篇关于R语言中逻辑回归知识点总结的文章就介绍到这了,更多相关R语言逻辑回归内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文