python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > torch.no_grad()函数使用

Python之torch.no_grad()函数使用和示例

作者:木彳

这篇文章主要介绍了Python之torch.no_grad()函数使用和示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教

torch.no_grad()函数使用和示例

torch.no_grad() 是 PyTorch 中的一个上下文管理器,用于在进入该上下文时禁用梯度计算。

这在你只关心评估模型,而不是训练模型时非常有用,因为它可以显著减少内存使用并加速计算。

当你在 torch.no_grad() 上下文管理器中执行张量操作时,PyTorch 不会为这些操作计算梯度。

这意味着不会在 .grad 属性中累积梯度,并且操作会更快地执行。

使用torch.no_grad()

import torch

# 创建一个需要梯度的张量
x = torch.tensor([1.0], requires_grad=True)

# 使用 no_grad() 上下文管理器
with torch.no_grad():
    y = x * 2

    
y.backward()

print(x.grad)

输出:

RuntimeError                              Traceback (most recent call last)
Cell In[52], line 11
      7 with torch.no_grad():
      8     y = x * 2
---> 11 y.backward()
     13 print(x.grad)

File E:\anaconda\lib\site-packages\torch\_tensor.py:396, in Tensor.backward(self, gradient, retain_graph, create_graph, inputs)
    387 if has_torch_function_unary(self):
    388     return handle_torch_function(
    389         Tensor.backward,
    390         (self,),
   (...)
    394         create_graph=create_graph,
    395         inputs=inputs)
--> 396 torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)

File E:\anaconda\lib\site-packages\torch\autograd\__init__.py:173, in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
    168     retain_graph = create_graph
    170 # The reason we repeat same the comment below is that
    171 # some Python versions print out the first line of a multi-line function
    172 # calls in the traceback and some print out the last line
--> 173 Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
    174     tensors, grad_tensors_, retain_graph, create_graph, inputs,
    175     allow_unreachable=True, accumulate_grad=True)

RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

输出错误,因为使用了with torch.no_grad():。

不使用torch.no_grad()

import torch

# 创建一个需要梯度的张量
x = torch.tensor([1.0], requires_grad=True)

# 使用 no_grad() 上下文管理器
y = x * 2
y.backward()
print(x.grad)

输出:

tensor([2.])

@torch.no_grad()

with torch.no_grad()或者@torch.no_grad()中的数据不需要计算梯度,也不会进行反向传播

model.eval()                               
with torch.no_grad():
   ...

等价于

@torch.no_grad()
def eval():
    ...

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文