python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python协程

Python协程的2种实现方式分享

作者:不背锅运维

在 Python 中,协程(Coroutine)是一种轻量级的并发编程方式,可以通过协作式多任务来实现高效的并发执行。本文主要介绍了Python实现协程的2种方式,希望对大家有所帮助

什么是协程

在 Python 中,协程(Coroutine)是一种轻量级的并发编程方式,可以通过协作式多任务来实现高效的并发执行。协程是一种特殊的生成器函数,通过使用 yield 关键字来挂起函数的执行,并保存当前的执行状态。协程的执行可以通过 send 方法来恢复,并在下一次挂起时返回一个值。

在 Python 3.4 之前,协程通常使用 yield 关键字来实现,称为“生成器协程”。在 Python 3.4 引入了 asyncio 模块后,可以使用 async/await 关键字来定义协程函数,称为“原生协程”。

协程相比于线程和进程,具有以下优点:

协程的使用场景包括网络编程、异步 I/O、数据流处理、高并发任务等。

生成器协程

在 Python 3 中,生成器协程(Generator Coroutine)是指使用生成器函数来实现的协程。生成器函数是一种特殊的函数,其返回一个生成器对象,可以通过 yield 语句暂停函数的执行,然后在下一次调用生成器对象的 「next」() 方法时继续执行。

下面给出一个简单的生成器协程的示例,其中包含一个生成器函数 coroutine 和一个简单的异步 I/O 操作:

import asyncio

def coroutine():
    print('Coroutine started')
    while True:
        result = yield
        print('Coroutine received:', result)

async def main():
    print('Main started')
    c = coroutine()
    next(c)
    c.send('Hello')
    await asyncio.sleep(1)
    c.send('World')
    print('Main finished')

asyncio.run(main())

结果输出:

[root@workhost k8s]# python3 test.py 
Main started
Coroutine started
Coroutine received: Hello
Coroutine received: World
Main finished

来看一下,上面代码的执行过程:

在上面的代码中,使用生成器函数 coroutine 实现了一个简单的协程。生成器函数通过使用 yield 语句暂停函数的执行,然后可以通过 send 方法恢复函数的执行,并将值传递给生成器函数。通过这种方式,可以使用生成器函数实现异步并发。在上面的示例中,使用生成器函数接收并打印异步 I/O 操作的结果。

原生协程

Python 3 引入了原生协程(Native Coroutine)作为一种新的协程类型。原生协程是通过使用 async/await 关键字来定义的,与生成器协程不同,它们可以像普通函数一样使用 return 语句返回值,而不是使用 yield 语句。

下面给出一个简单的原生协程示例,其中包含一个 async 关键字修饰的协程函数 coroutine 和一个简单的异步 I/O 操作:

import asyncio

async def coroutine():
    print('Coroutine started')
    await asyncio.sleep(1)
    print('Coroutine finished')

async def main():
    print('Main started')
    await coroutine()
    print('Main finished')

asyncio.run(main())

结果输出:

[root@workhost k8s]# python3 test.py 
Main started
Coroutine started
Coroutine finished
Main finished

继续看一下执行过程:

在上面的代码中,使用 async 关键字定义了一个原生协程函数 coroutine,并在其中使用 await 关键字来暂停函数的执行,等待异步 I/O 操作的完成。通过这种方式,可以在原生协程中编写异步并发代码,从而提高代码的性能和效率。

两种协程对比

Python 3 中原生协程和生成器协程是两种不同的协程实现方式,它们各自有自己的特点和适用场景。下面,通过对比它们的区别和优缺点,才可以更好地理解它们之间的异同,以便选择适合自己的协程实现方式,从而更好地编写高效、可维护的异步程序。

1.区别:

2.优缺点:

原生协程的优点:

原生协程的缺点:

生成器协程的优点:

生成器协程的缺点:

实战案例

接下来,模拟一个场景,假设实现一个异步的批量处理任务的工具,使用原生协程来实现。

看下面代码:

import asyncio
import random

async def batch_process_task(tasks, batch_size=10):
    # 将任务列表划分为多个批次
    for i in range(0, len(tasks), batch_size):
        batch = tasks[i:i+batch_size]
        # 使用原生协程来异步处理每个批次的任务
        await asyncio.gather(*[process_task(task) for task in batch])

async def process_task(task):
    # 模拟任务处理过程
    await asyncio.sleep(random.uniform(0.5, 2.0))
    print("Task {} processed".format(task))

async def main():
    # 构造任务列表
    tasks = [i for i in range(1, 101)]
    # 并发处理批量任务
    await batch_process_task(tasks, batch_size=10)

if __name__ == '__main__':
    asyncio.run(main())

输出:

[root@workhost k8s]# python3 test.py 
Task 9 processed
Task 10 processed
Task 1 processed
Task 8 processed
Task 6 processed
Task 4 processed
Task 3 processed
Task 2 processed
Task 5 processed
...
...

batch_process_task函数使用原生协程来处理每个批次的任务,而process_task函数则是处理每个任务的函数。main函数则是构造任务列表,并且使用batch_process_task函数来异步地处理批量任务。

到此这篇关于Python协程的2种实现方式分享的文章就介绍到这了,更多相关Python协程内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文