python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Pytorch图像增广transforms

Pytorch中的图像增广transforms类和预处理方法

作者:北岛寒沫

这篇文章主要介绍了Pytorch中的图像增广和预处理方法(transforms类),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

1.随机翻转(水平和垂直)

torchvision.transforms.RandomVerticalFlip函数和torchvision.transforms.RandomHorizontalFlip函数是两个可以实现数据增强的函数,可以将输入的图像进行随机垂直翻转和随机水平翻转,从而增加数据集的多样性。

具体来说,torchvision.transforms.RandomVerticalFlip函数可以将输入图像在垂直方向上进行随机翻转,而torchvision.transforms.RandomHorizontalFlip函数可以将输入图像在水平方向上进行随机翻转。这两个函数都可以通过设置参数来控制翻转的概率。

下面是这两个函数的使用方法:

import torch
import torchvision.transforms as transforms

# 定义随机垂直翻转和随机水平翻转的概率
vflip_probability = 0.5  # 随机垂直翻转的概率
hflip_probability = 0.5  # 随机水平翻转的概率

# 定义图像变换
transform = transforms.Compose([
    transforms.RandomVerticalFlip(p=vflip_probability),
    transforms.RandomHorizontalFlip(p=hflip_probability)
])

在上述代码中,我们首先通过transforms.Compose函数定义了一个图像变换的序列,其中包含了随机垂直翻转和随机水平翻转两个操作。

2.随机裁剪缩放

torchvision.transforms.RandomResizedCrop函数可以进行随机裁剪和缩放,从而增加数据集的多样性。在实际使用中,这个函数有许多可调参数,下面是一个更加完整的介绍:

transforms.RandomResizedCrop(
    size,       # 输出图像的大小
    scale=(0.08, 1.0),  # 缩放范围,将输入图像按照该范围内的随机比例缩放
    ratio=(3.0/4.0, 4.0/3.0),   # 长宽比范围,将输入图像按照该范围内的随机比例进行裁剪
    interpolation=2     # 缩放时使用的插值方法,可选1、2、3、4中的一个,默认为PIL.Image.BILINEAR
)

下面是各个参数的详细介绍:

3.随机修改颜色(颜色抖动)

在PyTorch中,torchvision.transforms.RandomColorJitter函数可以用于对图像进行随机颜色抖动,增加数据集的多样性。这个函数可以随机地改变图像的亮度、对比度、饱和度和色相,并且还可以随机地进行灰度化操作。下面是该函数的参数:

transforms.RandomColorJitter(
    brightness=0.1,    # 亮度调整的强度,默认值为0.1
    contrast=0.1,      # 对比度调整的强度,默认值为0.1
    saturation=0.1,    # 饱和度调整的强度,默认值为0.1
    hue=0.1,           # 色相调整的强度,默认值为0.1
    p=0.5,             # 执行颜色抖动的概率,默认值为0.5
)

下面是各个参数的详细介绍:

4.将图像转化为张量

在PyTorch的torchvision库中,ToTensor函数是一种将PIL Image或numpy.ndarray格式的图像转换为PyTorch Tensor格式的函数。它可以将图像中的像素值转换为0到1之间的标准化数值,并调整图像的通道顺序,使其符合PyTorch模型的输入要求。

ToTensor函数的使用方法如下:

from torchvision.transforms import ToTensor
transform = ToTensor()

一般来说,在使用Compose组合在一起的一组transform中,ToTensor函数应该放在最后一个位置,以便将图像转换为PyTorch Tensor格式的图像,并确保其他所有的transform都在Tensor转换之前完成。

5.标准化操作

在PyTorch的torchvision.transforms库中,Normalize函数是一种对图像进行标准化处理的函数。它可以将图像中的像素值进行归一化处理,使得图像的像素值均值为0,标准差为1,从而增强模型的收敛速度和泛化性能。

Normalize函数的使用方法如下:

from torchvision.transforms import Normalize
transform = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

在上述代码中,我们首先导入了Normalize函数,并创建了一个名为transform的Normalize对象。其中,meanstd参数分别代表图像各通道像素值的平均值和标准差。在这里,我们以ImageNet数据集的图像均值和标准差为例进行了设置。

需要注意的是,Normalize函数应该在图像转换为PyTorch Tensor格式之后应用,即在ToTensor之后。这是因为Normalize需要对每个通道的像素值进行标准化,而ToTensor函数将图像中的像素值转换为PyTorch Tensor格式后,每个通道的像素值将存储在不同的维度上,因此才需要在ToTensor之后进行标准化处理。

6.同时结合多种增广方法

在PyTorch的torchvision库中,Compose函数是一种将多个数据增强操作组合在一起的函数。它可以将多个数据增强操作按照一定的顺序组合在一起,并将它们作为一个整体应用于数据集中的每个样本。Compose函数可以帮助我们方便地实现复杂的数据增强操作,同时也可以使我们的代码更加简洁和易读。

Compose函数的使用方法如下:

from torchvision.transforms import Compose
from torchvision.transforms import RandomCrop, RandomHorizontalFlip, ToTensor

transform = Compose([
    RandomCrop(32),
    RandomHorizontalFlip(),
    ToTensor()
])

在上述代码中,我们首先导入了Compose函数和其他一些数据增强操作,然后创建了一个名为transform的Compose对象。该Compose对象由三个数据增强操作组成:随机裁剪(RandomCrop),随机水平翻转(RandomHorizontalFlip)和转换为Tensor格式(ToTensor)。

到此这篇关于Pytorch中的图像增广和预处理方法(transforms类)的文章就介绍到这了,更多相关Pytorch图像增广和预处理内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文