javascript技巧

关注公众号 jb51net

关闭
首页 > 网络编程 > JavaScript > javascript技巧 > 无constructor class类new

无constructor的class类还能new吗问题解析

作者:一溪之石

这篇文章主要为大家介绍了无constructor的class类是否还能new的问题解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

前言

某一天晚上跟"混子瑶"聊天,下面模拟一下对话情景。

我:混子瑶,今天学了什么啊?

混子瑶:今天学习了TypeScriptclass类高级类型啊!(然后发了一张截图...,图上有明显的两个类 )

 class Point { x: number; y: number };
 class Point2D ( x: number; y: number };
 const p: Point = new Point2D();

我:Point2D都没有constructor,它能被new吗?

混子瑶:可以啊,你看它又没报错:

我:这么神奇的嘛?

混子瑶: emmmm...

果真是这么神奇的嘛?来试一下不就知道咯!

class语法糖

classES6提供的一个语法糖,本质是一个函数,它具有constructorstatic默认方法... 咦?既然constructorclass类默认的,那岂不是显示,隐式都会默认去调用吗?文章的标题不就是一个子虚乌有的吗? 我们上babel来进行一下语法降级。

class A {
  x = 1;
  y = 2
}
const a = new A(10,20)
console.log(a); // {x: 1, y: 2}
class B {
  constructor(x, y){
    this.x = x;
    this.y = y;
  }
  x = 1;
  y = 2;
}
const b = new B(30,40)
console.log(b); // {x: 30, y: 40}
// 降级之后的代码
"use strict";
function _typeof(obj) { "@babel/helpers - typeof"; return _typeof = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (obj) { return typeof obj; } : function (obj) { return obj && "function" == typeof Symbol && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }, _typeof(obj); }
function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, _toPropertyKey(descriptor.key), descriptor); } }
function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; }
function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }
function _defineProperty(obj, key, value) { key = _toPropertyKey(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; }
function _toPropertyKey(arg) { var key = _toPrimitive(arg, "string"); return _typeof(key) === "symbol" ? key : String(key); }
function _toPrimitive(input, hint) { if (_typeof(input) !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (_typeof(res) !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); }
var A = /*#__PURE__*/_createClass(function A() {
  _classCallCheck(this, A);
  _defineProperty(this, "x", 1);
  _defineProperty(this, "y", 2);
});
var a = new A(10, 20);
console.log(a); // {x: 1, y: 2}
var B = /*#__PURE__*/_createClass(function B(x, y) {
  _classCallCheck(this, B);
  _defineProperty(this, "x", 1);
  _defineProperty(this, "y", 2);
  this.x = x;
  this.y = y;
});
var b = new B(30, 40);
console.log(b); // {x: 30, y: 40}

利用babel降级把ES6转化成了ES5代码,更能证明class只是一个语法糖,本质只是一个函数。那我们来研究一下这些函数吧!🔥🔥🔥🔥

var B = /*#__PURE__*/ _createClass(function B(x, y) {
  _classCallCheck(this, B)
  _defineProperty(this, 'x', 1)
  _defineProperty(this, 'y', 2)
  this.x = x // 这里的this为new出来的 B{}
  this.y = y // 这里的this为new出来的 B{}
})
var b = new B(30, 40)
console.log(b) // {x: 30, y: 40}

_createClass

function _createClass(Constructor, protoProps, staticProps) {
  // 其中Constructor为f B(x,y),创造的一个ES5构造函数
  // protoProps :undefined 属性
  // staticProps: undefined 静态属性
  if (protoProps) _defineProperties(Constructor.prototype, protoProps)
  if (staticProps) _defineProperties(Constructor, staticProps)
  Object.defineProperty(Constructor, 'prototype', { writable: false })
  return Constructor // 返回f B(x,y)
}

_classCallCheck

function _classCallCheck(instance, Constructor) {
  // instance = B{} 由new创造出来
  // Constructor = f B(x, y)
  if (!(instance instanceof Constructor)) {
    throw new TypeError('Cannot call a class as a function')
  }
}

_defineProperty

function _defineProperty(obj, key, value) {
  // obj = B{}
  // key = "x"
  // value = 1
  key = _toPropertyKey(key) // 取到原始值key
  if (key in obj) { // 如果key是实例属性或者在原型链上,就做劫持
    Object.defineProperty(obj, key, {
      value: value,
      enumerable: true,
      configurable: true,
      writable: true
    })
  } else { // 不在的话,就添加key
    obj[key] = value
  }
  return obj // 返回实例对象
}

_toPropertyKey

function _toPropertyKey(arg) {
  // arg = "x"
  var key = _toPrimitive(arg, 'string') // "x"
  return _typeof(key) === 'symbol' ? key : String(key)
}

_toPrimitive

function _toPrimitive(input, hint) {
  // input = "x"
  // hint = "string"
  // 如果input是原始值,并且不等于null,则直接返回
  if (_typeof(input) !== 'object' || input === null) return input
  var prim = input[Symbol.toPrimitive] // 如果是对象,则需要拆箱得到原始值
  if (prim !== undefined) { // 如果是不等于undefined,则表示有原始值
    var res = prim.call(input, hint || 'default')
    if (_typeof(res) !== 'object') return res
    throw new TypeError('@@toPrimitive must return a primitive value.')
  }
  return (hint === 'string' ? String : Number)(input) // 如果是undefined则表示,没有取到原始值,需要继续拆箱调用Sting("x")取到原始值
}

_typeof

function _typeof(obj) {
  // obj = "x"
  '@babel/helpers - typeof' // babel提供的解析模块
  return (
    (_typeof =
      // 验证是否支持Symbol
      'function' == typeof Symbol && 'symbol' == typeof Symbol.iterator
        ? function (obj) {
            return typeof obj // "string"
          } // 支持Symbol,则_typeof = fucntion(obj){return typeof obj}
        : function (obj) { // 不支持Symbol的话,则会判断当前的单一职责,保证一个实例的情况
            return obj && 
              'function' == typeof Symbol &&
              obj.constructor === Symbol &&
              obj !== Symbol.prototype
              ? 'symbol'
              : typeof obj // "string"
          }),
    _typeof(obj)
  )
}

_defineProperties

function _defineProperties(target, props) {
  // target = Constructor.prototype
  // props = props属性
  for (var i = 0; i < props.length; i++) {
    var descriptor = props[i] // 遍历属性
    descriptor.enumerable = descriptor.enumerable || false // 设置不可枚举 静态属性无法被实例化
    descriptor.configurable = true // 可扩展
    if ('value' in descriptor) descriptor.writable = true // 科协
    Object.defineProperty(target, _toPropertyKey(descriptor.key), descriptor)
  }
}

静态属性无法被实例化

关于class的继承

我们有如下代码

// class B
class B {
  static q = 1;
  m = 3;
  constructor(x, y){
    this.x = x;
    this.y = y;
  }
}
// class E
class E extends B {
    constructor(x,y){
      super(x,y)
      this.x = x;
      this.y  =y
    }
  m = 10;
  n = 20;
}
const e = new E(100,200)
const b = new B(30,40)
console.log(e);
console.log(b);

执行结果:

代码降级:

"use strict";
function _typeof(obj) { "@babel/helpers - typeof"; return _typeof = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (obj) { return typeof obj; } : function (obj) { return obj && "function" == typeof Symbol && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }, _typeof(obj); }
function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function"); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }); Object.defineProperty(subClass, "prototype", { writable: false }); if (superClass) _setPrototypeOf(subClass, superClass); }
function _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf ? Object.setPrototypeOf.bind() : function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); }
function _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; }
function _possibleConstructorReturn(self, call) { if (call && (_typeof(call) === "object" || typeof call === "function")) { return call; } else if (call !== void 0) { throw new TypeError("Derived constructors may only return object or undefined"); } return _assertThisInitialized(self); }
function _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return self; }
function _isNativeReflectConstruct() { if (typeof Reflect === "undefined" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === "function") return true; try { Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {})); return true; } catch (e) { return false; } }
function _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf.bind() : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); }
function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, _toPropertyKey(descriptor.key), descriptor); } }
function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; }
function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }
function _defineProperty(obj, key, value) { key = _toPropertyKey(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; }
function _toPropertyKey(arg) { var key = _toPrimitive(arg, "string"); return _typeof(key) === "symbol" ? key : String(key); }
function _toPrimitive(input, hint) { if (_typeof(input) !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (_typeof(res) !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); }
var B = /*#__PURE__*/_createClass(function B(x, y) {
  _classCallCheck(this, B);
  _defineProperty(this, "m", 3);
  this.x = x;
  this.y = y;
});
_defineProperty(B, "q", 1);
var b = new B(30, 40);
console.log(b);
var E = /*#__PURE__*/function (_B) {
  _inherits(E, _B); // _B为f B(x,y) E 为f E(x, y)
  var _super = _createSuper(E);
  function E(x, y) {
    var _this;
    _classCallCheck(this, E);
    _this = _super.call(this, x, y);
    _defineProperty(_assertThisInitialized(_this), "m", 10);
    _defineProperty(_assertThisInitialized(_this), "n", 20);
    _this.x = x;
    _this.y = y;
    return _this;
  }
  return _createClass(E);
}(B);
var e = new E(100, 200);
console.log(e);

在这里我们看到了super关键字被_inherits_createSuper代替,extends关键字也被函数替代,那么我们来研究一下这个代码。

_inherits

function _inherits(subClass, superClass) { // subClass为子类的构造函数,superClass为父类的构造函数
  if (typeof superClass !== 'function' && superClass !== null) {
    throw new TypeError('Super expression must either be null or a function')
  }
  // 创建子类的原型
  subClass.prototype = Object.create(superClass && superClass.prototype, {
    constructor: { value: subClass, writable: true, configurable: true }
  })
  Object.defineProperty(subClass, 'prototype', { writable: false })
  // 绑定子类原型
  if (superClass) _setPrototypeOf(subClass, superClass)
}

_setPrototypeOf

function _setPrototypeOf(o, p) { // o为子类的构造函数,p为父类的构造函数
  _setPrototypeOf = Object.setPrototypeOf
    ? Object.setPrototypeOf.bind()
    : function _setPrototypeOf(o, p) {
        o.__proto__ = p
        return o
      }
  return _setPrototypeOf(o, p) // 绑定原型
}

_createSuper

function _createSuper(Derived) { // Derived = f E(x,y)
  // 校验能不能用Reflect
  var hasNativeReflectConstruct = _isNativeReflectConstruct()
  return function _createSuperInternal() {
    var Super = _getPrototypeOf(Derived), // 获得原型对象
      result // 创建实例结果
    if (hasNativeReflectConstruct) { // 如果能用Reflect,则调用Reflect.construct来创建实例对象
      var NewTarget = _getPrototypeOf(this).constructor
      result = Reflect.construct(Super, arguments, NewTarget)
    } else {
      result = Super.apply(this, arguments) // 不能则把父类当做普通函数执行,this改变为子类实例对象
    }
    return _possibleConstructorReturn(this, result)
  }
}

_isNativeReflectConstruct

function _isNativeReflectConstruct() {
  // 判断是否可用Reflect, 不可被new,因为没有construct
  if (typeof Reflect === 'undefined' || !Reflect.construct) return false
  if (Reflect.construct.sham) return false
  if (typeof Proxy === 'function') return true
  try {
    Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {}))
    return true
  } catch (e) {
    return false
  }
}

_getPrototypeOf

// 获取原型对象
function _getPrototypeOf(o) {
  _getPrototypeOf = Object.setPrototypeOf
    ? Object.getPrototypeOf.bind()
    : function _getPrototypeOf(o) {
        return o.__proto__ || Object.getPrototypeOf(o)
      }
  return _getPrototypeOf(o)
}

_possibleConstructorReturn_assertThisInitialized则是检验子类constructor规则与实例存在与否。 之后便是走_createclass那一套逻辑,所以这就是class继承相关的东西,跟ES5中的组合寄生继承实现的很类似。

总结

经过这么一转换,一阅读,我们不仅仅知道了class类的一个本身的概念,而且还知道了他的一个实现原理,能够深入了解他的一个实例化的过程,当我们在被问到class类没有constructor还能被new吗?

以上就是无constructor的class类还能new吗问题解析的详细内容,更多关于无constructor class类new的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文