python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python Merge

Python中Merge使用的示例详解

作者:Memory_ss

Python里的merger函数是数据分析工作中最常见的函数之一,类似于MySQL中的join函数和Excel中的vlookup函数。本文将通过一些简单的实力和大家聊聊Merge的使用,需要的可以了解一下

merage

pandas提供了一个类似于关系数据库的连接(join)操作的方法merage,可以根据一个或多个键将不同DataFrame中的行连接起来,语法如下:

merge(left, right, how=‘inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True,
suffixes=('_x', ‘_y'), copy=True, indicator=False)

作为一个功能完善、强大的语言,python的pandas库中的merge()支持各种内外连接。

#coding=utf-8
import pandas as pd
import numpy as np

class PanMerge():
    def PanMer(self):
        data =  pd.DataFrame([{"id": 0, "name": 'lxh', "age": 20, "cp": 'lm'}, {"id": 1, "name": 'xiao', "age": 40, "cp": 'ly'},{"id": 2, "name": 'hua', "age": 4, "cp": 'yry'}, {"id": 3, "name": 'be', "age": 70, "cp": 'old'}])
        data1 = pd.DataFrame([{"id": 100, "name": 'lxh', 'cs': 10}, {"id": 101, "name": 'xiao', 'cs': 40},{"id": 102, "name": 'hua2', 'cs': 50}])
        data2 = pd.DataFrame([{"id": 0, "name": 'lxh', 'cs': 10}, {"id": 101, "name": 'xiao', 'cs': 40},{"id": 102, "name": 'hua2', 'cs': 50}])
        data3 = pd.DataFrame([{"mid": 0, "mname": 'lxh', 'cs': 10}, {"mid": 101, "mname": 'xiao', 'cs': 40},{"mid": 102, "mname": 'hua2', 'cs': 50}])
        # print(data)
        # print(data1)
        # print(data2)
        df1 = pd.merge(data,data1,on="name",how="left",suffixes=('_a','_b'))#相同的其他类名用_a和_b标注
        df2 = pd.merge(data, data2, on=("name", "id")) #多列名做为内链接的连接键
        df3 = pd.merge(data, data2)  #不指定on则以两个DataFrame的列名交集做为连接键

        # 使用右边的DataFrame的行索引做为连接键
        indexed_data1 = data1.set_index("name")##设置行索引名称
        # print(indexed_data1)
        df5 = pd. merge(data, indexed_data1, left_on='name', right_index=True) #"使用右边的DataFrame的行索引做为连接键\r\n"
        print(df5)
        print('左外连接\r\n',pd.merge(data,data1,on="name",how="left",suffixes=('_a','_b')))
        print('左外连接1\r\n',pd.merge(data1,data,on="name",how="left"))
        print ('右外连接\r\n',pd.merge(data,data1,on="name",how="right"))

        # 当左右两个DataFrame的列名不同,当又想做为连接键时可以使用left_on与right_on来指定连接键
        df6=pd.merge(data,data3,left_on=["name","id"],right_on=["mname","mid"])
        print(df6)

join方法提供了一个简便的方法用于将两个DataFrame中的不同的列索引合并成为一个DataFrame。

其中参数的意义与merge方法基本相同, 只是join方法默认为左外连接how = left。

 dj1=pd.DataFrame([{"id":0,"name":'lxh',"age":20,"cp":'lm'},{"id":1,"name":'xiao',"age":40,"cp":'ly'},{"id":2,"name":'hua',"age":4,"cp":'yry'},{"id":3,"name":'be',"age":70,"cp":'old'}],index=['a','b','c','d'])
    dj2=pd.DataFrame([{"sex":0},{"sex":1},{"sex":2}],index=['a','b','e'])
    print(dj1)
    print(dj2)
    df7= dj1.join(dj2)
    print(df7)

    print('使用右连接\r\n', dj1.join(dj2, how="right") ) # 这里出自动屏蔽了data1中没有index=c,d的那行数据;等价于data1.join(data)
    print('使用内连接\r\n', dj1.join(dj2, how='inner'))
    print('使用全外连接\r\n', dj1.join(dj2, how='outer'))

还有一种连接方式:concat

concat方法相当于数据库中的全连接(UNION ALL),可以指定按某个轴进行连接,也可以指定连接的方式join(outer,inner 只有这两种)。

与数据库不同的是concat不会去重,要达到去重的效果可以使用drop_duplicates方法

     dc1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'], 'rank': range(1, 4)})
        dc2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'], 'rank': [1, 4, 5]})
        print(dc1)
        print(dc2)
        # print('按轴进行内连接\r\n', pd.concat([dc1, dc2], join="inner", axis=0))
        dc3=pd.concat([dc1,dc2],join="inner", axis=0) #axis=1横向操作,axis=0纵向操作
        print(dc3)
        dc4=pd.concat([dc1,dc2],keys=['a','b']) #进行外连接并指定keys(行索引) 用a,b 进行标识
        print(dc4)

        dc5 = pd.concat([dc1,dc2],ignore_index=True).drop_duplicates() #完全一样时候,去重数据
        print(dc5)


if __name__ == '__main__':
    PanMerge().PanMer()

到此这篇关于Python中Merge使用的示例详解的文章就介绍到这了,更多相关Python Merge内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文