python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Pytorch retain_graph的坑

Pytorch中retain_graph的坑及解决

作者:Longlongaaago

这篇文章主要介绍了Pytorch中retain_graph的坑及解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

Pytorch中retain_graph的坑

在查看SRGAN源码时有如下损失函数,其中设置了retain_graph=True,其作用就是

在更新D网络时的loss反向传播过程中使用了retain_graph=True,目的为是为保留该过程中计算的梯度,后续G网络更新时使用;

        ############################
        # (1) Update D network: maximize D(x)-1-D(G(z))
        ###########################
        real_img = Variable(target)
        if torch.cuda.is_available():
            real_img = real_img.cuda()
        z = Variable(data)
        if torch.cuda.is_available():
            z = z.cuda()
        fake_img = netG(z)
 
        netD.zero_grad()
        real_out = netD(real_img).mean()
        fake_out = netD(fake_img).mean()
        d_loss = 1 - real_out + fake_out
        d_loss.backward(retain_graph=True) #####
        optimizerD.step()
 
        ############################
        # (2) Update G network: minimize 1-D(G(z)) + Perception Loss + Image Loss + TV Loss
        ###########################
        netG.zero_grad()
        g_loss = generator_criterion(fake_out, fake_img, real_img)
        g_loss.backward()
        optimizerG.step()
        fake_img = netG(z)
        fake_out = netD(fake_img).mean()
 
        g_loss = generator_criterion(fake_out, fake_img, real_img)
        running_results['g_loss'] += g_loss.data[0] * batch_size
        d_loss = 1 - real_out + fake_out
        running_results['d_loss'] += d_loss.data[0] * batch_size
        running_results['d_score'] += real_out.data[0] * batch_size
        running_results['g_score'] += fake_out.data[0] * batch_size

也就是说,只要我们有一个loss,我们就可以先loss.backward(retain_graph=True)  让它先计算梯度,若下面还有其他损失,但是可能你想扩展代码,可能有些loss是不用的,所以先加了 if 等判别语句进行了干预,使用loss.backward(retain_graph=True)就可以单独的计算梯度,屡试不爽。

但是另外一个问题在于,如果你都这么用的话,显存会爆炸,因为他保留了梯度,所以都没有及时释放掉,浪费资源。

而正确的做法应该是,在你最后一个loss 后面,一定要加上loss.backward()这样的形式,也就是让最后一个loss 释放掉之前所有暂时保存下来得梯度!!

Pytorch中有多次backward时需要retain_graph参数

Pytorch中的机制是每次调用loss.backward()时都会free掉计算图中所有缓存的buffers,当模型中可能有多次backward()时,因为前一次调用backward()时已经释放掉了buffer,所以下一次调用时会因为buffers不存在而报错

解决办法

loss.backward(retain_graph=True)

错误使用

因为每次调用bckward时都没有将buffers释放掉,所以会导致内存溢出,迭代越来越慢(因为梯度都保存了,没有free)

正确使用

最后一个 backward() 不要加 retain_graph 参数,这样每次更新完成后会释放占用的内存,也就不会出现越来越慢的情况了

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文