numpy降维方法
作者:Yuzzz.
本文主要介绍了numpy降维方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
numpy中的降维方法:
- flat():返回一个iterator,然后去遍历
- flatten():将多维数组拉平,并拷贝一份
- ravel():将多维数组拉平(一维)
- squeeze():除去多维数组中,维数为1的维度,如315降维后3*5
- reshape(-1):多维数组,拉平
- reshape(-1,5),其中-1表示我们不用亲自去指定这一维度的大小,理解为n维
代码示例:
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) c = [] for x in a.flat: c.append(x) print('flat迭代器降一维:\n', c) d = a.flatten() print('flatten方法降一维:\n', d) e = a.ravel() print('ravel方法降一维:\n', e) g = np.squeeze(a) print('squeeze方法降一维:\n', g) f = a.reshape(-1) print('reshape方法降一维:\n', f) a.resize((1, 6)) print('resize方法:\n', a)
结果:
flat迭代器降一维:
[1, 2, 3, 4, 5, 6]
flatten方法降一维:
[1 2 3 4 5 6]
ravel方法降一维:
[1 2 3 4 5 6]
squeeze方法降一维:
[[1 2 3]
[4 5 6]]
reshape方法降一维:
[1 2 3 4 5 6]
resize方法:
[[1 2 3 4 5 6]]
补:NumPy 高维数组降维方法
import numpy as np a = np.arange(64).reshape([4,4,4]) # [[[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11] # [12 13 14 15]] # # [[16 17 18 19] # [20 21 22 23] # [24 25 26 27] # [28 29 30 31]] # # [[32 33 34 35] # [36 37 38 39] # [40 41 42 43] # [44 45 46 47]] # # [[48 49 50 51] # [52 53 54 55] # [56 57 58 59] # [60 61 62 63]]] print(a) # 对三维数组a进行降维打击 a_reshape = a.reshape(-1) # [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 # 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 # 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63] print('reshape方法:\n',a_reshape) c_flat = [] for x in a.flat: c_flat.append(x) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63] print('flat迭代器:\n',c_flat) d_flatten = a.flatten() # [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 # 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 # 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63] print('flatten方法:\n',d_flatten) e_ravel = a.ravel() # [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 # 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 # 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63] print('ravel方法:\n',e_ravel) f_resize = a.resize(64) # None resize 没有返回值,改变的是原数组 print('resize方法:\n',f_resize) # [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 # 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 # 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63] print(a)
到此这篇关于numpy降维方法的文章就介绍到这了,更多相关numpy 降维内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!