python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > pandas pd.cut()与pd.qcut()

pandas pd.cut()与pd.qcut()的具体实现

作者:天山卷卷卷

本文主要介绍了pandas pd.cut()与pd.qcut()的具体实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1、pd.cut函数有7个参数,主要用于对数据从最大值到最小值进行等距划分

 pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

参数:

x : 输入待cut的一维数组

bins : cut的段数,一般为整型,但也可以为序列向量。

right : 布尔值,确定右区间是否开闭,取True时右区间闭合

labels : 数组或布尔值,默认为None,用来标识分后的bins,长度必须与结果bins相等,返回值为整数或者对bins的标识

retbins : 布尔值,可选。是否返回数值所在分组,Ture则返回

precision : 整型,bins小数精度,也就是数据以几位小数显示

include_lowest : 布尔类型,是否包含左区间

2、pd.qcut函数,按照数据出现频率百分比划分,比如要把数据分为四份,则四段分别是数据的0-25%,25%-50%,50%-75%,75%-100%

pd.qcut(x, q, labels=None, retbins=False, precision=3, duplicates='raise')

代码示例:

import numpy as np
from numpy import *
import pandas as pd
df = pd.DataFrame()
df['data'] = [1,2,2,2,2,6,7,8,9,0]#这里注意箱边界值需要唯一,不然qcut时程序会报错
df['cut']=pd.cut(df['data'],5)
df['qcut']=pd.qcut(df['data'],5)
df.head(10)

运行结果如图:

可以看到cut列各个分段之间间距相等,qcut由于数据中‘2’较多,所以2附近间距较小,2之后的分段间距较大。 

 到此这篇关于pandas pd.cut()与pd.qcut()的具体实现的文章就介绍到这了,更多相关pandas pd.cut()与pd.qcut()内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文