pytorch K折交叉验证过程说明及实现方式
作者:Foneone
这篇文章主要介绍了pytorch K折交叉验证过程说明及实现方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
K折交叉交叉验证的过程如下
以200条数据,十折交叉验证为例子,十折也就是将数据分成10组,进行10组训练,每组用于测试的数据为:数据总条数/组数,即每组20条用于valid,180条用于train,每次valid的都是不同的。
(1)将200条数据,分成按照 数据总条数/组数(折数),进行切分。然后取出第i份作为第i次的valid,剩下的作为train
(2)将每组中的train数据利用DataLoader和Dataset,进行封装。
(3)将train数据用于训练,epoch可以自己定义,然后利用valid做验证。得到一次的train_loss和 valid_loss。
(4)重复(2)(3)步骤,得到最终的 averge_train_loss和averge_valid_loss
上述过程如下图所示:
上述的代码如下:
import torch import torch.nn as nn from torch.utils.data import DataLoader,Dataset import torch.nn.functional as F from torch.autograd import Variable #####构造的训练集#### x = torch.rand(100,28,28) y = torch.randn(100,28,28) x = torch.cat((x,y),dim=0) label =[1] *100 + [0]*100 label = torch.tensor(label,dtype=torch.long) ######网络结构########## class Net(nn.Module): #定义Net def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28*28, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features ##########定义dataset########## class TraindataSet(Dataset): def __init__(self,train_features,train_labels): self.x_data = train_features self.y_data = train_labels self.len = len(train_labels) def __getitem__(self,index): return self.x_data[index],self.y_data[index] def __len__(self): return self.len ########k折划分############ def get_k_fold_data(k, i, X, y): ###此过程主要是步骤(1) # 返回第i折交叉验证时所需要的训练和验证数据,分开放,X_train为训练数据,X_valid为验证数据 assert k > 1 fold_size = X.shape[0] // k # 每份的个数:数据总条数/折数(组数) X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) #slice(start,end,step)切片函数 ##idx 为每组 valid X_part, y_part = X[idx, :], y[idx] if j == i: ###第i折作valid X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = torch.cat((X_train, X_part), dim=0) #dim=0增加行数,竖着连接 y_train = torch.cat((y_train, y_part), dim=0) #print(X_train.size(),X_valid.size()) return X_train, y_train, X_valid,y_valid def k_fold(k, X_train, y_train, num_epochs=3,learning_rate=0.001, weight_decay=0.1, batch_size=5): train_loss_sum, valid_loss_sum = 0, 0 train_acc_sum ,valid_acc_sum = 0,0 for i in range(k): data = get_k_fold_data(k, i, X_train, y_train) # 获取k折交叉验证的训练和验证数据 net = Net() ### 实例化模型 ### 每份数据进行训练,体现步骤三#### train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,\ weight_decay, batch_size) print('*'*25,'第',i+1,'折','*'*25) print('train_loss:%.6f'%train_ls[-1][0],'train_acc:%.4f\n'%valid_ls[-1][1],\ 'valid loss:%.6f'%valid_ls[-1][0],'valid_acc:%.4f'%valid_ls[-1][1]) train_loss_sum += train_ls[-1][0] valid_loss_sum += valid_ls[-1][0] train_acc_sum += train_ls[-1][1] valid_acc_sum += valid_ls[-1][1] print('#'*10,'最终k折交叉验证结果','#'*10) ####体现步骤四##### print('train_loss_sum:%.4f'%(train_loss_sum/k),'train_acc_sum:%.4f\n'%(train_acc_sum/k),\ 'valid_loss_sum:%.4f'%(valid_loss_sum/k),'valid_acc_sum:%.4f'%(valid_acc_sum/k)) #########训练函数########## def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate,weight_decay, batch_size): train_ls, test_ls = [], [] ##存储train_loss,test_loss dataset = TraindataSet(train_features, train_labels) train_iter = DataLoader(dataset, batch_size, shuffle=True) ### 将数据封装成 Dataloder 对应步骤(2) #这里使用了Adam优化算法 optimizer = torch.optim.Adam(params=net.parameters(), lr= learning_rate, weight_decay=weight_decay) for epoch in range(num_epochs): for X, y in train_iter: ###分批训练 output = net(X) loss = loss_func(output,y) optimizer.zero_grad() loss.backward() optimizer.step() ### 得到每个epoch的 loss 和 accuracy train_ls.append(log_rmse(0,net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(1,net, test_features, test_labels)) #print(train_ls,test_ls) return train_ls, test_ls def log_rmse(flag,net,x,y): if flag == 1: ### valid 数据集 net.eval() output = net(x) result = torch.max(output,1)[1].view(y.size()) corrects = (result.data == y.data).sum().item() accuracy = corrects*100.0/len(y) #### 5 是 batch_size loss = loss_func(output,y) net.train() return (loss.data.item(),accuracy) loss_func = nn.CrossEntropyLoss() ###申明loss函 k_fold(10,x,label) ### k=10,十折交叉验证
上述代码中,直接按照顺序从x中每次截取20条作为valid,也可以先打乱然后在截取,这样效果应该会更好。
如下所示:
import random import torch x = torch.rand(100,28,28) y = torch.randn(100,28,28) x = torch.cat((x,y),dim=0) label =[1] *100 + [0]*100 label = torch.tensor(label,dtype=torch.long) index = [i for i in range(len(x))] random.shuffle(index) x = x[index] label = label[index]
交叉验证区分k折代码分析
from sklearn.model_selection import GroupKFold x = np.array([1,2,3,4,5,6,7,8,9,10]) y = np.array([1,2,3,4,5,6,7,8,9,10]) z = np.array(['hello1','hello2','hello3','hello4','hello5','hello6','hello7','hello8','hello9','hello10']) gkf = GroupKFold(n_splits = 5) for i,(train_idx,valid_idx) in enumerate(list(gkf.split(x,y,z))): #groups:object,Always ignored,exists for compatibility. print('train_idx = ') print(train_idx) print('valid_idx = ') print(valid_idx)
可以看出来首先train_idx以及valid_idx的相应值都是从中乱序提取的,其次每个相应值只提取一次,不会重复提取。
注意交叉验证的流程:这里首先放一个对应的交叉验证的图片:
注意这里的训练方式是每个初始化的模型分别训练n折的数值,然后算出对应的权重内容
也就是说这里每一次计算对应的权重内容(1~n)的时候,需要将模型的权重初始化,然后再进行训练,训练最终结束之后,模型的权重为训练完成之后的平均值,多模类似于模型融合
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。