Android

关注公众号 jb51net

关闭
首页 > 软件编程 > Android > Kotlin SharedFlow 缓存

图解 Kotlin SharedFlow 缓存系统及示例详解

作者:fundroid

这篇文章主要为大家介绍了图解 Kotlin SharedFlow 缓存系统及示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

前言

Kotlin 为我们提供了两种创建“热流”的工具:StateFlowSharedFlow。StateFlow 经常被用来替代 LiveData 充当架构组件使用,所以大家相对熟悉。其实 StateFlow 只是 SharedFlow 的一种特化形式,SharedFlow 的功能更强大、使用场景更多,这得益于其自带的缓存系统,本文用图解的方式,带大家更形象地理解 SharedFlow 的缓存系统。

创建 SharedFlow 需要使用到 MutableSharedFlow() 方法,我们通过方法的三个参数配置缓存:

fun <T> MutableSharedFlow(
    replay: Int = 0, 
    extraBufferCapacity: Int = 0, 
    onBufferOverflow: BufferOverflow = BufferOverflow.SUSPEND
): MutableSharedFlow<T>

接下来,我们通过时序图的形式介绍这三个关键参数对缓存的影响。正文之前让我们先统一一下用语:

replay

当 Subscriber 订阅 SharedFlow 时,有机会接收到之前已发送过的数据,replay 指定了可以收到 subscribe 之前数据的数量。replay 不能为负数,默认值为 0 表示 Subscriber 只能接收到 subscribe 之后 emit 的数据:

上图展示的是 replay = 0 的情况,Subscriber 无法收到 subscribe 之前 emit 的 ❶,只能接收到 ❷ 和 ❸。

当 replay = n ( n > 0)时,SharedFlow 会启用缓存,此时 BufferSize 为 n,意味着可以缓存发射过的最近 n 个数据,并发送给新增的 Subscriber。

上图以 n = 1 为例 :

在生产者消费者模型中,有时消费的速度赶不及生产,此时要加以控制,要么停止生产,要么丢弃数据。SharedFlow 也同样如此。有时 Subscriber 的处理速度较慢,Buffer 缓存的数据得不到及时处理,当 Buffer 为空时,emit 默认将会被挂起 ( onBufferOverflow = SUSPEND)

上面的图展示了 replay = 1 时 emit 发生 suspend 场景:

注意 SharedFlow 作为一个多播可以有多个 Subscriber,所以上面例子中,❷ 被消费的时间点,取决于最后一个开始处理的 Subscriber。

extraBufferCapacity

extraBufferCapacity 中的 extra 表示 replay-cache 之外为 Buffer 还可以额外追加的缓存。

若 replay = n, extraBufferCapacity = m,则 BufferSize = m + n。

extraBufferCapacity 默认为 0,设置 extraBufferCapacity 有助于提升 Emitter 的吞吐量

在上图的基础之上,我们再设置 extraBufferCapacity = 1,效果如下图:

上图中 BufferSize = 1 + 1 = 2 :

onBufferOverflow

前面的例子中,当 Buffer 被填满时,emit 会被挂起,这都是建立在 onBufferOverflow 为 SUSPEND 的前提下的。onBufferOverflow 用来指定缓存移除时的策略,除了默认的 SUSPEND,还有两个数据丢弃策略:

需要特别注意的是,当 BufferSize = 0 时,extraBufferCapacity 只支持 SUSPEND,其他丢弃策略是无效的。这很好理解,因为 Buffer 中没有数据,所以丢弃无从下手,所以启动丢弃策略的前提是 Buffer 至少有一个缓冲区,且数据被填满

上图展示 DROP_LATEST 的效果。假设 replay = 2,extra = 0

上图展示了 DROP_OLDEST 的效果,与 DROP_LATEST 比较后非常明显,缓存中永远会储存最新的两个数据,但是较老的数据不管有没有被消费,都可能会从 Buffer 移除,所以 Subscriber 可以消费当前最新的数据,但是有可能漏掉中间的数据,比如图中漏掉了 ❷

注意:当 extraBufferCapacity 设为 SUSPEND 可以保证 Subscriber 一个不漏的消费掉所有数据,但是会影响 Emitter 的速度;当设置为 DROP_XXX 时,可以保证 emit 调用后立即返回,但是 Subscriber 可能会漏掉部分数据。

如果我们不想让 emit 发生挂起,除了设置 DROP_XXX 之外,还有一个方法就是调用 tryEmit,这是一个非 suspend 版本的 emit

abstract suspend override fun emit(value: T)
abstract fun tryEmit(value: T): Boolean

tryEmit 返回一个 boolean 值,你可以这样判断返回值,当使用 emit 会挂起时,使用 tryEmit 会返回 false,其余情况都是 true。这意味着 tryEmit 返回 false 的前提是 extraBufferCapacity 必须设为 SUSPEND,且 Buffer 中空余位置为 0 。此时使用 tryEmit 的效果等同于 DROP_LATEST。

SharedFlow Buffer

前面介绍的 MutableSharedFlow 的三个参数,其本质都是围绕 SharedFlow 的 Buffer 进行工作的。那么这个 Buffer 具体结构是怎样的呢?

上面这个图是 SharedFlow 源码中关于 Buffer 的注释,这个图形象地告诉了我们 Buffer 是一个线性数据结构(就是一个普通的数组 Array<Any?>),但是这个图不能直观反应 Buffer 运行机制。下面通过一个例子,看一下 Buffer 在运行时的具体更新过程:

val sharedFlow = MutableSharedFlow<Int>(
    replay = 2, 
    extraBufferCapacity = 2,
    onBufferOverflow = BufferOverflow.SUSPEND
)
var emitValue = 1
fun main() {
    runBlocking {
        launch {
            sharedFlow.onEach {
                delay(200) // simulate the consume of data
            }.collect()
        }
        repeat(12) {
            sharedFlow.emit(emitValue)
            emitValue++
            delay(50)
        }
    }
}

上面的代码很简单,SharedFlow 的 BufferSize = 2+2 = 4,Emitter 生产的速度大于 Subscriber 消费的速度,所以过程中会出现 Buffer 的填充和更新,下面依旧用图的方式展示 Buffer 的变化

先看一下代码对应的时序图:

有前面的介绍,相信这个时序图很容易理解,这里就不再赘述了,下面重点图解一下 Buffer 的内存变化。SharedFlow 的 Buffer 本质上是一个基于 Array 实现的 queue,通过指针移动从往队列增删元素,避免了元素在实际数组中的移动。这里关键的指针有三个:

如果 bufferSize 表示当前 Buffer 中存储数据的个数,则我们可知三指针 index 符合如下关系:

  • replay <= head + bufferSize
  • end = head + bufferSize

了解了三指针的含义后,我们再来看上图中的 Buffer 是如何工作的:

最后,总结一下 Buffer 的特点:

以上就是图解 Kotlin SharedFlow 缓存系统及示例详解的详细内容,更多关于Kotlin SharedFlow 缓存的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文