java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java 坐标系相互转换

Java 坐标系相互转换方式

作者:梦里寻乡

这篇文章主要介绍了Java中的坐标系相互转换方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

Java坐标系相互转换

1. WGS-84原始坐标系,一般用国际GPS纪录仪记录下来的经纬度,通过GPS定位拿到的原始经纬度,Google和高德地图定位的的经纬度(国外)都是基于WGS-84坐标系的; 

* 但是在国内是不允许直接用WGS84坐标系标注的,必须经过加密后才能使用;

2. GCJ-02坐标系,又名“火星坐标系”,是我国国测局独创的坐标体系,由WGS-84加密而成,在国内,必须至少使用GCJ-02坐标系,

或者使用在GCJ-02加密后再进行加密的坐标系,如百度坐标系。高德和Google在国内都是使用GCJ-02坐标系,可以说,GCJ-02是国内最广泛使用的坐标系;

3. 百度坐标系:bd-09,百度坐标系是在GCJ-02坐标系的基础上再次加密偏移后形成的坐标系,只适用于百度地图。

(目前百度API提供了从其它坐标系转换为百度坐标系的API,但却没有从百度坐标系转为其他坐标系的API) 

/**
 * 各GPS坐标转换工具类
 */  
public class GPSUtil {
    public static double pi = 3.1415926535897932384626;  
    public static double x_pi = 3.14159265358979324 * 3000.0 / 180.0;  
    public static double a = 6378245.0;  
    public static double ee = 0.00669342162296594323;  
 
    public static double transformLat(double x, double y) {  
        double ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y  
                + 0.2 * Math.sqrt(Math.abs(x));  
        ret += (20.0 * Math.sin(6.0 * x * pi) + 20.0 * Math.sin(2.0 * x * pi)) * 2.0 / 3.0;  
        ret += (20.0 * Math.sin(y * pi) + 40.0 * Math.sin(y / 3.0 * pi)) * 2.0 / 3.0;  
        ret += (160.0 * Math.sin(y / 12.0 * pi) + 320 * Math.sin(y * pi / 30.0)) * 2.0 / 3.0;  
        return ret;  
    }  
 
    public static double transformLon(double x, double y) {  
        double ret = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1  
                * Math.sqrt(Math.abs(x));  
        ret += (20.0 * Math.sin(6.0 * x * pi) + 20.0 * Math.sin(2.0 * x * pi)) * 2.0 / 3.0;  
        ret += (20.0 * Math.sin(x * pi) + 40.0 * Math.sin(x / 3.0 * pi)) * 2.0 / 3.0;  
        ret += (150.0 * Math.sin(x / 12.0 * pi) + 300.0 * Math.sin(x / 30.0  
                * pi)) * 2.0 / 3.0;  
        return ret;  
    }  
    public static double[] transform(double lat, double lon) {  
        if (outOfChina(lat, lon)) {  
            return new double[]{lat,lon};  
        }  
        double dLat = transformLat(lon - 105.0, lat - 35.0);  
        double dLon = transformLon(lon - 105.0, lat - 35.0);  
        double radLat = lat / 180.0 * pi;  
        double magic = Math.sin(radLat);  
        magic = 1 - ee * magic * magic;  
        double sqrtMagic = Math.sqrt(magic);  
        dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * pi);  
        dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * pi);  
        double mgLat = lat + dLat;  
        double mgLon = lon + dLon;  
        return new double[]{mgLat,mgLon};  
    }  
    public static boolean outOfChina(double lat, double lon) {  
        if (lon < 72.004 || lon > 137.8347)  
            return true;  
        if (lat < 0.8293 || lat > 55.8271)  
            return true;  
        return false;  
    }  
    /** 
     * 84 to 火星坐标系 (GCJ-02) World Geodetic System ==> Mars Geodetic System 
     * 
     * @param lat 
     * @param lon 
     * @return 
     */  
    public static double[] gps84_To_Gcj02(double lat, double lon) {  
        if (outOfChina(lat, lon)) {  
            return new double[]{lat,lon};  
        }  
        double dLat = transformLat(lon - 105.0, lat - 35.0);  
        double dLon = transformLon(lon - 105.0, lat - 35.0);  
        double radLat = lat / 180.0 * pi;  
        double magic = Math.sin(radLat);  
        magic = 1 - ee * magic * magic;  
        double sqrtMagic = Math.sqrt(magic);  
        dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * pi);  
        dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * pi);  
        double mgLat = lat + dLat;  
        double mgLon = lon + dLon;  
        return new double[]{mgLat, mgLon};  
    }  
 
    /** 
     * * 火星坐标系 (GCJ-02) to 84 * * @param lon * @param lat * @return 
     * */  
    public static double[] gcj02_To_Gps84(double lat, double lon) {  
        double[] gps = transform(lat, lon);  
        double lontitude = lon * 2 - gps[1];  
        double latitude = lat * 2 - gps[0];  
        return new double[]{latitude, lontitude};  
    }  
    /** 
     * 火星坐标系 (GCJ-02) 与百度坐标系 (BD-09) 的转换算法 将 GCJ-02 坐标转换成 BD-09 坐标 
     * 
     * @param lat 
     * @param lon 
     */  
    public static double[] gcj02_To_Bd09(double lat, double lon) {  
        double x = lon, y = lat;  
        double z = Math.sqrt(x * x + y * y) + 0.00002 * Math.sin(y * x_pi);  
        double theta = Math.atan2(y, x) + 0.000003 * Math.cos(x * x_pi);  
        double tempLon = z * Math.cos(theta) + 0.0065;  
        double tempLat = z * Math.sin(theta) + 0.006;  
        double[] gps = {tempLat,tempLon};  
        return gps;  
    }  
 
    /** 
     * * 火星坐标系 (GCJ-02) 与百度坐标系 (BD-09) 的转换算法 * * 将 BD-09 坐标转换成GCJ-02 坐标 * * @param 
     * bd_lat * @param bd_lon * @return 
     */  
    public static double[] bd09_To_Gcj02(double lat, double lon) {  
        double x = lon - 0.0065, y = lat - 0.006;  
        double z = Math.sqrt(x * x + y * y) - 0.00002 * Math.sin(y * x_pi);  
        double theta = Math.atan2(y, x) - 0.000003 * Math.cos(x * x_pi);  
        double tempLon = z * Math.cos(theta);  
        double tempLat = z * Math.sin(theta);  
        double[] gps = {tempLat,tempLon};  
        return gps;  
    }  
 
    /**将gps84转为bd09 
     * @param lat 
     * @param lon 
     * @return 
     */  
    public static double[] gps84_To_bd09(double lat,double lon){  
        double[] gcj02 = gps84_To_Gcj02(lat,lon);  
        double[] bd09 = gcj02_To_Bd09(gcj02[0],gcj02[1]);  
        return bd09;  
    }  
    public static double[] bd09_To_gps84(double lat,double lon){  
        double[] gcj02 = bd09_To_Gcj02(lat, lon);  
        double[] gps84 = gcj02_To_Gps84(gcj02[0], gcj02[1]);  
        //保留小数点后六位  
        gps84[0] = retain7(gps84[0]);  
        gps84[1] = retain7(gps84[1]);  
        return gps84;  
    }  
 
    /**保留小数点后六位 
     * @param num 
     * @return 
     */  
    private static double retain7(double num){  
        String result = String .format("%.7f", num);  
        return Double.valueOf(result);  
    }
}

Java任意两个坐标系转换

这里需要两个坐标系的对应两个点

首先是实体类

@Data
@NoArgsConstructor
@AllArgsConstructor
@Accessors(chain = true)
public class Point {
 
    private double x;
    private double y;
    private double z;
}

计算工具类

@Component
@NoArgsConstructor
@Slf4j
public class transUtil {
 
    /**
     * 获取两点连线与y轴夹角
     *
     * @param p1 点1
     * @param p2 点2
     * @return 与y轴夹角(角度)
     */
    public  double getAngle(Point p1, Point p2) {
        double angle = Math.atan2(p2.getX() - p1.getX(), p2.getY() - p1.getY());
        return angle * (180 / Math.PI);
    }
 
    /**
     * 获取缩放比例
     *
     * @param p1 源点1
     * @param b1 目标点1
     * @param p2 源点2
     * @param b2 目标点2
     * @return 缩放比例
     */
    public double getScale(Point p1, Point b1, Point p2, Point b2) {
        return getLength(b1, b2) / getLength(p1, p2);
    }
 
    /**
     * 获取两点之间连线的长度
     *
     * @param p1 点1
     * @param p2 点2
     * @return 长度
     */
    public static double getLength(Point p1, Point p2) {
        return Math.sqrt(Math.pow(p2.getX() - p1.getX(), 2) + Math.pow(p2.getY() - p1.getY(), 2));
    }
 
    /**
     * X方向偏移距离参数
     *
     * @param p1       源点1
     * @param b1       目标点1
     * @param rotation 旋转角度
     * @param scale    缩放比例
     * @return X方向偏移
     */
    public double getXTranslation(Point p1, Point b1, double rotation, double scale) {
        return (b1.getX() - scale * (p1.getX() * Math.cos(rotation) - p1.getY() * Math.sin(rotation)));
    }
 
    /**
     * Y方向偏移距离参数
     *
     * @param p1       源点1
     * @param b1       目标点1
     * @param rotation 旋转角度
     * @param scale    缩放比例
     * @return Y方向偏移
     */
    public double getYTranslation(Point p1, Point b1, double rotation, double scale) {
        return (b1.getY() - scale * (p1.getX() * Math.sin(rotation) + p1.getY() * Math.cos(rotation)));
    }
 
    /**
     * 转换操作
     *
     * @param gp       源点
     * @param rotation 旋转角度
     * @param scale    缩放比例
     * @param dx       X方向偏移
     * @param dy       Y方向偏移
     * @return 目标点
     */
    public Point transformBoePoint(Point gp, double rotation, double scale, double dx, double dy) {
        double A = scale * Math.cos(rotation);
        double B = scale * Math.sin(rotation);
        return new Point(retain6(A * gp.getX() - B * gp.getY() + dx), retain6(B * gp.getX() + A * gp.getY() + dy), 0.0);
    }
 
 
    /**
     * 保留小数点后六位
     *
     * @param num
     * @return
     */
    public static double retain6(double num) {
        String result = String.format("%.6f", num);
        return Double.valueOf(result);
    }
}

这里用到了lombok的相关,可以去除自行写相关方法

使用:四个点分别是 

Point1 Point2(原坐标系两个点) newPoint1 newPoint2(新坐标系对应的两个点) 分别对应Point1 -> newPoint1  Point2 -> newPoint2 

//初始化4点
double rotation = Math.toRadians(Math.abs(transUtil .getAngle(Point1 , Point2 ) - transUtil .getAngle(newPoint1 , newPoint2 )));
//获取到转化后的坐标
double scale = transUtil .getScale(newPoint1 , Point1 , newPoint2 , Point2 );
double tx = transUtil .getXTranslation(newPoint1 , Point1 , rotation, scale);
double ty = transUtil .getYTranslation(newPoint1 , Point1 , rotation, scale);
//需要转换的坐标 x,y,z
Point transPoint = new Point(o.getX(), o.getZ(), 0.0);
Point resultPoint = coordinateUtil.transformBoePoint(new Point(o.getX(), o.getZ(), 0.0), rotation, scale, tx, ty);

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文