Java 坐标系相互转换方式
作者:梦里寻乡
这篇文章主要介绍了Java中的坐标系相互转换方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
Java坐标系相互转换
1. WGS-84原始坐标系,一般用国际GPS纪录仪记录下来的经纬度,通过GPS定位拿到的原始经纬度,Google和高德地图定位的的经纬度(国外)都是基于WGS-84坐标系的;
* 但是在国内是不允许直接用WGS84坐标系标注的,必须经过加密后才能使用;
2. GCJ-02坐标系,又名“火星坐标系”,是我国国测局独创的坐标体系,由WGS-84加密而成,在国内,必须至少使用GCJ-02坐标系,
或者使用在GCJ-02加密后再进行加密的坐标系,如百度坐标系。高德和Google在国内都是使用GCJ-02坐标系,可以说,GCJ-02是国内最广泛使用的坐标系;
3. 百度坐标系:bd-09,百度坐标系是在GCJ-02坐标系的基础上再次加密偏移后形成的坐标系,只适用于百度地图。
(目前百度API提供了从其它坐标系转换为百度坐标系的API,但却没有从百度坐标系转为其他坐标系的API)
/** * 各GPS坐标转换工具类 */ public class GPSUtil { public static double pi = 3.1415926535897932384626; public static double x_pi = 3.14159265358979324 * 3000.0 / 180.0; public static double a = 6378245.0; public static double ee = 0.00669342162296594323; public static double transformLat(double x, double y) { double ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y + 0.2 * Math.sqrt(Math.abs(x)); ret += (20.0 * Math.sin(6.0 * x * pi) + 20.0 * Math.sin(2.0 * x * pi)) * 2.0 / 3.0; ret += (20.0 * Math.sin(y * pi) + 40.0 * Math.sin(y / 3.0 * pi)) * 2.0 / 3.0; ret += (160.0 * Math.sin(y / 12.0 * pi) + 320 * Math.sin(y * pi / 30.0)) * 2.0 / 3.0; return ret; } public static double transformLon(double x, double y) { double ret = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1 * Math.sqrt(Math.abs(x)); ret += (20.0 * Math.sin(6.0 * x * pi) + 20.0 * Math.sin(2.0 * x * pi)) * 2.0 / 3.0; ret += (20.0 * Math.sin(x * pi) + 40.0 * Math.sin(x / 3.0 * pi)) * 2.0 / 3.0; ret += (150.0 * Math.sin(x / 12.0 * pi) + 300.0 * Math.sin(x / 30.0 * pi)) * 2.0 / 3.0; return ret; } public static double[] transform(double lat, double lon) { if (outOfChina(lat, lon)) { return new double[]{lat,lon}; } double dLat = transformLat(lon - 105.0, lat - 35.0); double dLon = transformLon(lon - 105.0, lat - 35.0); double radLat = lat / 180.0 * pi; double magic = Math.sin(radLat); magic = 1 - ee * magic * magic; double sqrtMagic = Math.sqrt(magic); dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * pi); dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * pi); double mgLat = lat + dLat; double mgLon = lon + dLon; return new double[]{mgLat,mgLon}; } public static boolean outOfChina(double lat, double lon) { if (lon < 72.004 || lon > 137.8347) return true; if (lat < 0.8293 || lat > 55.8271) return true; return false; } /** * 84 to 火星坐标系 (GCJ-02) World Geodetic System ==> Mars Geodetic System * * @param lat * @param lon * @return */ public static double[] gps84_To_Gcj02(double lat, double lon) { if (outOfChina(lat, lon)) { return new double[]{lat,lon}; } double dLat = transformLat(lon - 105.0, lat - 35.0); double dLon = transformLon(lon - 105.0, lat - 35.0); double radLat = lat / 180.0 * pi; double magic = Math.sin(radLat); magic = 1 - ee * magic * magic; double sqrtMagic = Math.sqrt(magic); dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * pi); dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * pi); double mgLat = lat + dLat; double mgLon = lon + dLon; return new double[]{mgLat, mgLon}; } /** * * 火星坐标系 (GCJ-02) to 84 * * @param lon * @param lat * @return * */ public static double[] gcj02_To_Gps84(double lat, double lon) { double[] gps = transform(lat, lon); double lontitude = lon * 2 - gps[1]; double latitude = lat * 2 - gps[0]; return new double[]{latitude, lontitude}; } /** * 火星坐标系 (GCJ-02) 与百度坐标系 (BD-09) 的转换算法 将 GCJ-02 坐标转换成 BD-09 坐标 * * @param lat * @param lon */ public static double[] gcj02_To_Bd09(double lat, double lon) { double x = lon, y = lat; double z = Math.sqrt(x * x + y * y) + 0.00002 * Math.sin(y * x_pi); double theta = Math.atan2(y, x) + 0.000003 * Math.cos(x * x_pi); double tempLon = z * Math.cos(theta) + 0.0065; double tempLat = z * Math.sin(theta) + 0.006; double[] gps = {tempLat,tempLon}; return gps; } /** * * 火星坐标系 (GCJ-02) 与百度坐标系 (BD-09) 的转换算法 * * 将 BD-09 坐标转换成GCJ-02 坐标 * * @param * bd_lat * @param bd_lon * @return */ public static double[] bd09_To_Gcj02(double lat, double lon) { double x = lon - 0.0065, y = lat - 0.006; double z = Math.sqrt(x * x + y * y) - 0.00002 * Math.sin(y * x_pi); double theta = Math.atan2(y, x) - 0.000003 * Math.cos(x * x_pi); double tempLon = z * Math.cos(theta); double tempLat = z * Math.sin(theta); double[] gps = {tempLat,tempLon}; return gps; } /**将gps84转为bd09 * @param lat * @param lon * @return */ public static double[] gps84_To_bd09(double lat,double lon){ double[] gcj02 = gps84_To_Gcj02(lat,lon); double[] bd09 = gcj02_To_Bd09(gcj02[0],gcj02[1]); return bd09; } public static double[] bd09_To_gps84(double lat,double lon){ double[] gcj02 = bd09_To_Gcj02(lat, lon); double[] gps84 = gcj02_To_Gps84(gcj02[0], gcj02[1]); //保留小数点后六位 gps84[0] = retain7(gps84[0]); gps84[1] = retain7(gps84[1]); return gps84; } /**保留小数点后六位 * @param num * @return */ private static double retain7(double num){ String result = String .format("%.7f", num); return Double.valueOf(result); } }
Java任意两个坐标系转换
这里需要两个坐标系的对应两个点
首先是实体类
@Data @NoArgsConstructor @AllArgsConstructor @Accessors(chain = true) public class Point { private double x; private double y; private double z; }
计算工具类
@Component @NoArgsConstructor @Slf4j public class transUtil { /** * 获取两点连线与y轴夹角 * * @param p1 点1 * @param p2 点2 * @return 与y轴夹角(角度) */ public double getAngle(Point p1, Point p2) { double angle = Math.atan2(p2.getX() - p1.getX(), p2.getY() - p1.getY()); return angle * (180 / Math.PI); } /** * 获取缩放比例 * * @param p1 源点1 * @param b1 目标点1 * @param p2 源点2 * @param b2 目标点2 * @return 缩放比例 */ public double getScale(Point p1, Point b1, Point p2, Point b2) { return getLength(b1, b2) / getLength(p1, p2); } /** * 获取两点之间连线的长度 * * @param p1 点1 * @param p2 点2 * @return 长度 */ public static double getLength(Point p1, Point p2) { return Math.sqrt(Math.pow(p2.getX() - p1.getX(), 2) + Math.pow(p2.getY() - p1.getY(), 2)); } /** * X方向偏移距离参数 * * @param p1 源点1 * @param b1 目标点1 * @param rotation 旋转角度 * @param scale 缩放比例 * @return X方向偏移 */ public double getXTranslation(Point p1, Point b1, double rotation, double scale) { return (b1.getX() - scale * (p1.getX() * Math.cos(rotation) - p1.getY() * Math.sin(rotation))); } /** * Y方向偏移距离参数 * * @param p1 源点1 * @param b1 目标点1 * @param rotation 旋转角度 * @param scale 缩放比例 * @return Y方向偏移 */ public double getYTranslation(Point p1, Point b1, double rotation, double scale) { return (b1.getY() - scale * (p1.getX() * Math.sin(rotation) + p1.getY() * Math.cos(rotation))); } /** * 转换操作 * * @param gp 源点 * @param rotation 旋转角度 * @param scale 缩放比例 * @param dx X方向偏移 * @param dy Y方向偏移 * @return 目标点 */ public Point transformBoePoint(Point gp, double rotation, double scale, double dx, double dy) { double A = scale * Math.cos(rotation); double B = scale * Math.sin(rotation); return new Point(retain6(A * gp.getX() - B * gp.getY() + dx), retain6(B * gp.getX() + A * gp.getY() + dy), 0.0); } /** * 保留小数点后六位 * * @param num * @return */ public static double retain6(double num) { String result = String.format("%.6f", num); return Double.valueOf(result); } }
这里用到了lombok的相关,可以去除自行写相关方法
使用:四个点分别是
Point1 Point2(原坐标系两个点) newPoint1 newPoint2(新坐标系对应的两个点) 分别对应Point1 -> newPoint1 Point2 -> newPoint2
//初始化4点 double rotation = Math.toRadians(Math.abs(transUtil .getAngle(Point1 , Point2 ) - transUtil .getAngle(newPoint1 , newPoint2 ))); //获取到转化后的坐标 double scale = transUtil .getScale(newPoint1 , Point1 , newPoint2 , Point2 ); double tx = transUtil .getXTranslation(newPoint1 , Point1 , rotation, scale); double ty = transUtil .getYTranslation(newPoint1 , Point1 , rotation, scale); //需要转换的坐标 x,y,z Point transPoint = new Point(o.getX(), o.getZ(), 0.0); Point resultPoint = coordinateUtil.transformBoePoint(new Point(o.getX(), o.getZ(), 0.0), rotation, scale, tx, ty);
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。