python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Pandas查询数据df.query

Pandas查询数据df.query的使用

作者:北山啦

本文主要介绍了Pandas查询数据df.query的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

方法对比:
使用df[(df[“a”] > 3) & (df[“b”]<5)]的方式;
使用df.query(“a>3 & b<5”)的方式;

df = pd.read_csv("beijing_tianqi_2018.csv")
df.head()
 ymdbWenduyWendutianqifengxiangfengliaqiaqiInfoaqiLevel
02018-01-013℃-6℃晴~多云东北风1-2级592
12018-01-022℃-5℃阴~多云东北风1-2级491
22018-01-032℃-5℃多云北风1-2级281
32018-01-040℃-8℃东北风1-2级281
42018-01-053℃-6℃多云~晴西北风1-2级501
# 替换掉温度的后缀℃
df.loc[:, "bWendu"] = df["bWendu"].str.replace("℃", "").astype('int32')
df.loc[:, "yWendu"] = df["yWendu"].str.replace("℃", "").astype('int32')

使用dataframe条件表达式查询

最低温度低于-10度的列表

df[df["yWendu"] < -10].head()
 ymdbWenduyWendutianqifengxiangfengliaqiaqiInfoaqiLevel
222018-01-23-4-12西北风3-4级311
232018-01-24-4-11西南风1-2级341
242018-01-25-3-11多云东北风1-2级271
3592018-12-26-2-11晴~多云东北风2级261
3602018-12-27-5-12多云~晴西北风3级481

复杂条件查询

注意,组合条件用&符号合并,每个条件判断都得带括号

## 查询最高温度小于30度,并且最低温度大于15度,并且是晴天,并且天气为优的数据
df[
    (df["bWendu"]<=30) 
    & (df["yWendu"]>=15) 
    & (df["tianqi"]=='晴') 
    & (df["aqiLevel"]==1)]
 ymdbWenduyWendutianqifengxiangfengliaqiaqiInfoaqiLevel
2352018-08-243020北风1-2级401
2492018-09-072716西北风3-4级221

使用df.query可以简化查询

形式:DataFrame.query(expr, inplace=False, **kwargs)

其中expr为要返回boolean结果的字符串表达式

形如:

df.query可支持的表达式语法:

df.query中可以使用@var的方式传入外部变量

df.query支持的语法来自NumExpr,地址:
https://numexpr.readthedocs.io/projects/NumExpr3/en/latest/index.html

查询最低温度低于-10度的列表

df.query("yWendu < 3").head(3)
 ymdbWenduyWendutianqifengxiangfengliaqiaqiInfoaqiLevel
02018-01-013-6晴~多云东北风1-2级592
12018-01-022-5阴~多云东北风1-2级491
22018-01-032-5多云北风1-2级281

查询最高温度小于30度,并且最低温度大于15度,并且是晴天,并且天气为优的数据

## 查询最高温度小于30度,并且最低温度大于15度,并且是晴天,并且天气为优的数据
df.query("bWendu<=30 & yWendu>=15 & tianqi=='晴' & aqiLevel==1")
 ymdbWenduyWendutianqifengxiangfengliaqiaqiInfoaqiLevel
2352018-08-243020北风1-2级401
2492018-09-072716西北风3-4级221

查询温差大于15度的日子

df.query("bWendu-yWendu >= 15").head()
 ymdbWenduyWendutianqifengxiangfengliaqiaqiInfoaqiLevel
682018-03-1014-2东南风1-2级171中度污染4
822018-03-24225西南风1-2级119轻度污染3
832018-03-25247南风1-2级782
842018-03-26257多云西南风1-2级151中度污染4
852018-03-272711南风1-2级243重度污染5

可以使用外部的变量

# 查询温度在这两个温度之间的数据
high_temperature = 15
low_temperature = 13
df.query("yWendu<=@high_temperature & yWendu>=@low_temperature").head()
 ymdbWenduyWendutianqifengxiangfengliaqiaqiInfoaqiLevel
1072018-04-182714多云~晴西南风3-4级147轻度污染3
1082018-04-192613多云东南风4-5级170中度污染4
1092018-04-202814多云~小雨南风4-5级164中度污染4
1162018-04-272513西南风3-4级112轻度污染3
1192018-04-302414多云南风3-4级622

 到此这篇关于Pandas查询数据df.query的使用的文章就介绍到这了,更多相关Pandas查询数据df.query 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文