Python数据结构树与算法分析
作者:Ding Jiaxiong
这篇文章主要介绍了Python数据结构树与算法分析,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
1.示例
树的一些属性:
- 层次性:树是按层级构建的,越笼统就越靠近顶部,越具体则越靠近底部。
- 一个节点的所有子节点都与另一个节点的所有子节点无关。
- 叶子节点都是独一无二的。
- 嵌套
2.术语及定义
- 节点:树的基础部分。节点的名字 → 键,附加信息 → 有效载荷。
- 边:两个节点通过一条边相连,表示它们之间存在关系。除了根节点,其他每个结点都仅有一条入边,出边则可能有多条。
- 根节点:树中唯一没有入边的结点。
- 路径:由边连接的有序节点列表。
- 子节点:一个节点通过出边与子节点相连。
- 父节点:一个节点是其所有子节点的父节点。
- 兄弟节点:具有同一父节点的结点 → 互称兄弟节点。
- 子树:一个父节点及其所有后代的节点和边构成一棵子树。
- 叶子结点:叶子节点没有子节点。
- 层数:节点n的层数是从根节点到n的唯一路径长度。根节点的层数为0。
- 高度:树的高度是其中节点层数的最大值。
1.定义一:树由节点及连接节点的边构成。
树的属性:
- 有一个根节点除根节点外,其他每个节点都与其唯一的父节点相连。
- 从根节点到其他每个节点有且仅有一条路径。
- 如果每个节点最多有两个子节点 → 二叉树。
2.定义二:一棵树要么为空,要么由一个根节点和零棵或多棵子树构成,子树本身也是一棵树。
每棵子树的根节点通过一条边连到父树的根节点。
3.实现
3.1 列表之列表
树的根节点是myTree[0],左子树是myTree[1],右子树是myTree[2]。
# 列表函数 def BinaryTree(r): return [r,[],[]] # 根节点r,和两个作为子节点的空列表 # 插入左子树 def insertLeft(root,newBranch): t = root.pop(1) if len(t) > 1: root.insert(1,[newBranch,t,[]]) else: root.insert(1,[newBranch,[],[]]) return root ## 插入右子树 def insertRight(root , newBranch): t = root.pop(2) if len(t) > 1: root.insert(2,[newBranch,[],t]) else: root.insert(2,[newBranch,[],[]]) return root ### 树的访问函数 def getRootVal(root): return root[0] def setRootVal(root,newVal): root[0] = newVal def getLeftChild(root): return root[1] def getRightChild(root): return root[2] r = BinaryTree(3) insertLeft(r,4) print(r)
3.2节点与引用
定义一个类,其中有根节点和左右子树的属性。
class BinaryTree: def __init__(self,rootObj): self.key = rootObj self.leftChild = None self.rightChild = None ## 插入左子节点 def insertLeft(self,newNode): if self.leftChild == None: self.leftChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.left = self.leftChild self.leftChild = t ## 插入右子节点 def insertRight(self,newNode): if self.rightChild == None: self.rightChild = BinaryTree(newNode) else: t = BinaryTree(newNode) t.right = self.rightChild self.rightChild = t ## 访问函数 def getRightChild(self): return self.rightChild def getLeftChild(self): return self.leftChild def setRootVal(self,obj): self.key = obj def getRootVal(self): return self.key
4.二叉树的应用
4.1解析树
- 根据完全括号表达式构建解析树
- 如何计算解析树中的表达式
- 如何将解析树还原成最初的数学表达式
解析树构建器:
import operator from pythonds.basic import Stack from pythonds.trees import BinaryTree def buildParseTree(fpexp): fplist = fpexp.split() pStack = Stack() eTree = BinaryTree("") pStack.push(eTree) currentTree = eTree for i in fplist: if i == "(": currentTree.insertLeft("") pStack.push(currentTree) currentTree = currentTree.getLeftChild() elif i not in "+-*/)": currentTree.setRootVal(eval(i)) parent = pStack.pop() currentTree = parent elif i in "+-*/": currentTree.setRootVal(i) currentTree.insertRight("") currentTree = currentTree.getRightChild() elif i == ")": currentTree = pStack.pop() else: raise ValueError("Unkown Operator :" + i ) return eTree ## 计算二叉解析树的递归函数 def evaluate(parseTree): opers = { "+":operator.add,"-":operator.sub, "*":operator.mul,"/":operator.truediv } leftC = parseTree.getLeftChild() rightC = parseTree.getRightChild() if leftC and rightC: fn = opers[parseTree.getRootVal()] return fn(evaluate(leftC),evaluate(rightC)) else: return parseTree.getRootVal()
4.2树的遍历
- 前序遍历【根左右】
- 中序遍历【左根右】
- 后序遍历【左右根】
前序遍历算法实现为外部函数:
def preorder(tree): if tree: print(tree.getRootVal()) preorder(tree.getLeftChild()) preorder(tree.getRightChild)
前序遍历算法实现为BinaryTree类的方法
def preorder(self): print(self.key) if self.leftChild: self.leftChild.preorder() if self.rightChild: self.rightChild.preorder()
后序遍历函数
def postorder(tree): if tree != None: postorder(tree.getLeftChild()) postorder(tree.getRightChild()) print(tree.getRootVal())
中序遍历函数
def inorder(tree): if tree != None: inorder(tree.getLeftChild()) print(tree.getRootVal()) inorder(tree.getRightChild())
5.利用二叉堆实现优先级队列
队列一个重要的变体 → 优先级队列。和队列一样,优先级队列从头部移除元素,不过元素的逻辑顺序是由优先级决定的,优先级最高的元素在最前,最低的元素在最后。
实现优先级队列的经典方法 → 二叉堆。入队和出队操作均可达到O(logn)
- 最小堆【最小的元素一直在队首】
- 最大堆【最大的元素一直在队首】 6.6.2 二叉堆的实现
结构属性:
- 完全二叉树:除了最底层,其他每一层的节点都是满的。且在最底层,从左往右填充节点。
- 完全二叉树可以用一个列表直接表示。
堆的有序性:对于堆中任意元素x及其父元素p,p都不大于x。
堆操作
代码实现:
class EchaDui: # 新建二叉堆 def __init__(self): self.heapList = [0] self.currentSize = 0 def percUp(self,i): while i // 2 > 0: if self.heapList[i] < self.heapList[i // 2]: tmp = self.heapList[i // 2] self.heapList[i // 2] = self.heapList[i] self.heapList[i] = tmp i = i // 2 # 新加元素 def insert(self,k): self.heapList.append(k) self.currentSize = self.currentSize + 1 self.percUp(self.currentSize) def percDown(self,i): while (i * 2) <= self.currentSize: mc = self.minChild(i) if self.heapList[i] > self.heapList[mc]: tmp = self.heapList[i] self.heapList[i] = self.heapList[mc] self.heapList[mc] = tmp i = mc def minChild(self,i): if i * 2 + 1 > self.currentSize: return i * 2 else: if self.heapList[i*2] < self.heapList[i*2 + 1]: return i * 2 else: return i * 2 + 1 ## 从二叉堆中删除最小的元素 def delMin(self): retval = self.heapList[1] self.heapList[1] = self.heapList[self.currentSize] self.currentSize = self.currentSize - 1 self.heapList.pop() self.percDown(1) return retval ## 根据元素列表构建堆 def builgHeap(self,alist): i = len(alist) // 2 self.currentSize = len(alist) self.heapList = [0] + alist[:] while (i > 0): self.percDown(i) i = i - 1
6.二叉搜索树
6.1搜索树的实现
二叉搜索树依赖性质:小于父节点的键都在左子树中,大于父节点的键则都在右子树。
代码实现:
class BinarySearchTree: def __init__(self): self.root = None self.size = 0 def length(self): return self.size def __len__(self): return self.size def __iter__(self): return self.root.__iter__() # 插入新节点 def put(self,key,val): if self.root: self._put(key,val,self.root) else: self.root = TreeNode(key,val) self.size = self.size + 1 def _put(self,key,val,currentNode): if key < currentNode.key: if currentNode.hasLeftChild(): self._put(key,val,currentNode.leftChild) else: currentNode.leftChild = TreeNode(key,val,parent=currentNode) else: if currentNode.hasRightChild(): self._put(key,val,currentNode.rightChild) else: currentNode.rightChild = TreeNode(key,val,parent=currentNode) def __setitem__(self, key, value): self._put(key,value) ## 查找键对应的值 def get(self,key): if self.root: res = self._get(key,self.root) if res: return res.payload else: return None else: return None def _get(self,key,currentNode): if not currentNode: return None elif currentNode.key == key: return currentNode elif key < currentNode.key: return self._get(key,currentNode.leftChild) else: return self._get(key,currentNode.rightChild) def __getitem__(self, key): return self.get(key) # 检查树中是否有某个键 def __contains__(self, key): if self._get(key,self.root): return True else: return False # 删除 def delete(self,key): if self.size > 1: nodeToRemove = self._get(key,self.root) if nodeToRemove: self.remove(nodeToRemove) self.size = self.size - 1 else: raise KeyError("Error,key not in tree") elif self.size == 1 and self.root.key == key: self.root = None self.size = self.size - 1 else: raise KeyError("Error,key not in tree") def __delitem__(self, key): self.delete(key) """ 1. 待删除节点没有子节点 2. 待删除节点只有一个子节点 3. 待删除节点有两个子节点 """ # 寻找后继结点 def findSuccessor(self): succ = None if self.hasRightChild(): succ = self.rightChild.findMin() else: if self.parent: if self.isLeftChild(): succ = self.parent else: self.parent.rightChild = None succ = self.parent.findSuccessor() self.parent.rightChild = self return succ def findMin(self): current = self while current.hasLeftChild(): current = current.leftChild return current def spliceOut(self): if self.isLeaf(): if self.isLeftChild(): self.parent.leftChild = None else: self.parent.rightChild = None elif self.hasAnyChildren(): if self.hasLeftChild(): if self.isLeftChild(): self.parent.leftChild = self.leftChild else: self.parent.rightChild = self.leftChild self.leftChild.parent = self.parent else: if self.isLeftChild(): self.parent.leftChild = self.rightChild else: self.parent.rightChild = self.rightChild self.rightChild.parent = self.parent def remove(self,currentNode): if currentNode.isLeaf(): if currentNode == currentNode.parent.leftChild: currentNode.parent.leftChild = None else: currentNode.parent.rightChild = None elif currentNode.hasBothChildren(): succ = currentNode.findSuccessor() succ.spliceOut() currentNode.key = succ.key currentNode.payload = succ.payload else: if currentNode.hasLeftChild(): if currentNode.isLeftChild(): currentNode.leftChild.parent = currentNode.parent currentNode.parent.leftChild = currentNode.leftChild elif currentNode.isRightChild(): currentNode.leftChild.parent = currentNode.parent currentNode.parent.rightChild = currentNode.leftChild else: currentNode.replaceNodeData(currentNode.leftChild.key, currentNode.leftChild.payload, currentNode.leftChild.leftChild, currentNode.leftChild.rightChild ) else: if currentNode.isLeftChild(): currentNode.rightChild.parent = currentNode.parent currentNode.parent.leftChild = currentNode.rightChild elif currentNode.isRightChild(): currentNode.rightChild.parent = currentNode.parent currentNode.parent.rightChild = currentNode.rightChild else: currentNode.replaceNodeData(currentNode.rightChild.key, currentNode.rightChild.payload, currentNode.rightChild.leftChild, currentNode.rightChild.rightChild ) # 二叉搜索树迭代器 def __iter__(self): if self: if self.hasLeftChild(): for elem in self.leftChild: yield elem yield self.key if self.hasRightChild(): for elem in self.rightChild: yield elem class TreeNode: def __init__(self,key,val,left = None,right = None,parent = None): self.key = key self.payload = val self.leftChild = left self.rightChild = right self.parent = parent def hasLeftChild(self): return self.leftChild def hasRightChild(self): return self.rightChild def isLeftChild(self): return self.parent and self.parent.leftChild == self def isRightChild(self): return self.parent and self.parent.rightChild == self def isRoot(self): return not self.parent def isLeaf(self): return not (self.rightChild or self.leftChild) def hasAnyChildren(self): return self.rightChild or self.leftChild def replaceNodeData(self,key,value,lc,rc): self.key = key self.payload = value self.leftChild = lc self.rightChild = rc if self.hasLeftChild(): self.leftChild.parent = self if self.hasRightChild(): self.rightChild.parent = self
7.平衡二叉搜索树(AVL树)
实现AVL树时,要记录每个节点的平衡因子。
平衡因子 = 左右子树的高度之差
→ 保证树的平衡因子为-1,0,1,可以使得关键操作获得更好的大O性能
#from 第6章树.二叉搜索树 import TreeNode def _put(self, key, val, currentNode): if key < currentNode.key: if currentNode.hasLeftchi1d(): self._put(key, val, currentNode.leftChild) else: currentNode.leftChild = TreeNode(key, val,parent=currentNode) self.updateBalance(currentNode.leftChild) else: if currentNode.hasRightChild(): self._put(key, val, currentNode.rightChild) else: currentNode.rightchild - TreeNode(key, val,parent=currentNode) self.updateBalance(currentNode.rightChild) def updateBalance(self, node): if node.balanceFactor > 1 or node.balanceFactor < -1: self.rebalance(node) return if node.parent != None: if node.isLeftChild(): node.parent.balanceFactor += 1 elif node.isRightChild(): node.parent.balanceFactor -= 1 if node.parent.balanceFactor != 0: self.updateBalance(node.parent) # 实现左旋 def rotateLeft (self, rotRoot) : newRoot = rotRoot .rightchild rotRoot .rightChild = newRoot.leftChild if newRoot . leftChild !=None : newRoot . leftChild. parent = rotRoot newRoot.parent =rotRoot.parent if rotRoot .isRoot( ): self.root = newRoot else: if rotRoot .isLeftChild(): rotRoot.parent .leftChild = newRoot else: rotRoot.parent .rightChild = newRoot newRoot . leftChild = rotRoot rotRoot.parent = newRoot rotRoot. balanceFactor = rotRoot . balanceFactor + 1 - min(newRoot . balanceFactor,0) newRoot . balanceFactor = newRoot . balanceFactor + 1 +max(rotRoot . balanceFactor,o ) # 实现再平衡 def rebalance(self, node) : if node. balanceFactor < 0: if node .rightChild .balanceFactor > 0: self.rotateRight (node.rightChild)self.rotateLeft (node) else: self.rotateLeft (node) elif node. balanceFactor > 0 : if node . leftChild. balanceFactor < 0: self.rotateLeft (node. leftChild) self.rotateRight (node) else: self.rotateRight (node) nceFactor + 1 - min(newRoot . balanceFactor,0) newRoot . balanceFactor = newRoot . balanceFactor + 1 +max(rotRoot . balanceFactor,o ) # 实现再平衡 def rebalance(self, node) : if node. balanceFactor < 0: if node .rightChild .balanceFactor > 0: self.rotateRight (node.rightChild)self.rotateLeft (node) else: self.rotateLeft (node) elif node. balanceFactor > 0 : if node . leftChild. balanceFactor < 0: self.rotateLeft (node. leftChild) self.rotateRight (node) else: self.rotateRight (node)
到此这篇关于Python数据结构树与算法分析的文章就介绍到这了,更多相关Python数据结构树内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!