Java数据结构通关时间复杂度和空间复杂度
作者:菜菜不恰菜
算法效率
算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被 称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额 外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎(以前是以时间换空间).但是经过计算机行业的 迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复 杂度(现在是以空间换时间)。
时间复杂度
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但 是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦所以才有了时间复杂度这个分析方 式。一个算法所花费的时间与其中语句的执行次数成正比例, 算法中的基本操作的执行次数,为算法的时间复 杂度。
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次数,那么这里我们使用大 O 的渐进表示法。
大 O 符号( Big O notation ):是用于描述函数渐进行为的数学符号。
推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶
来看些例子:
// 请计算一下func1基本操作执行了多少次? void func1(int N){ int count = 0; for (int i = 0; i < N ; i++) { for (int j = 0; j < N ; j++) { count++; } } for (int k = 0; k < 2 * N ; k++) { count++; } int M = 10; while ((M--) > 0) { count++; } System.out.println(count); }
通过上面我们会发现大 O 的渐进表示法 去掉了那些对结果影响不大的项 ,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数 ( 上界 )
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数 ( 下界 )
例如:在一个长度为 N 数组中搜索一个数据 x
最好情况: 1 次找到
最坏情况: N 次找到
平均情况: N/2 次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为 O(N)
例子二
// 计算func2的时间复杂度? void func2(int N) { int count = 0; for (int k = 0; k < 2 * N ; k++) { count++; } int M = 10; while ((M--) > 0) { count++; } System.out.println(count); }
例子三
// 计算func3的时间复杂度? void func3(int N, int M) { int count = 0; for (int k = 0; k < M; k++) { count++; } for (int k = 0; k < N ; k++) { count++; } System.out.println(count); }
例子四
// 计算func4的时间复杂度? void func4(int N) { int count = 0; for (int k = 0; k < 100; k++) { count++; } System.out.println(count); }
例子五
// 计算bubbleSort的时间复杂度? void bubbleSort(int[] array) { for (int end = array.length; end > 0; end--) { boolean sorted = true; for (int i = 1; i < end; i++) { if (array[i - 1] > array[i]) { Swap(array, i - 1, i); sorted = false; } } if (sorted == true) { break; } } }
例子六
// 计算binarySearch的时间复杂度? int binarySearch(int[] array, int value) { int begin = 0; int end = array.length - 1; while (begin <= end) { int mid = begin + ((end-begin) / 2); if (array[mid] < value) begin = mid + 1; else if (array[mid] > value) end = mid - 1; else return mid; } return -1; }
例子七
// 计算阶乘递归factorial的时间复杂度? long factorial(int N) { return N < 2 ? N : factorial(N-1) * N; }
空间复杂度
空间复杂度是对一个算法在运行过程中 临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少 bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数(额外变量个数)。空间复杂度计算规则基本跟时间复杂度 类似。也使用 大 O 渐进表示法 。
例子一
// 计算bubbleSort的空间复杂度? void bubbleSort(int[] array) { for (int end = array.length; end > 0; end--) { boolean sorted = true; for (int i = 1; i < end; i++) { if (array[i - 1] > array[i]) { Swap(array, i - 1, i); sorted = false; } } if (sorted == true) { break; } } }
例子二
// 计算fibonacci的空间复杂度? int[] fibonacci(int n) { long[] fibArray = new long[n + 1]; fibArray[0] = 0; fibArray[1] = 1; for (int i = 2; i <= n ; i++) { fibArray[i] = fibArray[i - 1] + fibArray [i - 2]; } return fibArray; }
例子三
// 计算阶乘递归Factorial的空间复杂度? long factorial(int N) { return N < 2 ? N : factorial(N-1)*N; }
小结
这篇文章讲的都是一些简单的时间复杂度和空间复杂度的计算,如果有什么不正确的地方,欢迎大家指出来。
到此这篇关于Java数据结构通关时间复杂度和空间复杂度的文章就介绍到这了,更多相关Java时间复杂度 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!