python绘制分组对比柱状图
作者:cejutue
这篇文章主要为大家详细介绍了python绘制分组对比柱状图,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本文实例为大家分享了python绘制分组对比柱状图的具体代码,供大家参考,具体内容如下
首先放效果图:
# -*- coding: utf-8 -*- import numpy as np import tensorflow as tf from matplotlib.path import Path from matplotlib.patches import PathPatch import matplotlib.pyplot as plt import matplotlib from matplotlib.animation import FuncAnimation import matplotlib as mpl import datetime import time import re import urllib.request np.set_printoptions(suppress=True) mpl.rcParams['font.sans-serif'] = ['SimHei'] #指定默认字体 SimHei为黑体 mpl.rcParams['axes.unicode_minus'] = False #用来正常显示负 import requests import re import hashlib #测试数据 osm的点线面数据 #测试主机 8G 4核 1T机械盘 #mysql 5.7.23 #postgresql 12 #dameng 7 #oracle 19c 19.3 #读取效率 点 线 面 r = [ [24714, 21748, 19298], #Oracle [44127, 45943, 42199], #GDB #[0, 0, 0], #SQLITE # [0, 0, 0], #MySQL [352641, 352739, 304189], #SQLITE [213550, 218095, 212749], #MySQL [36556, 22172, 12741], #PostgreSQL [52749, 46292, 20040], #dameng [25111, 12000, 11000], #ArcGIS_GDB [10102, 9003, 7003] #ArcGIS_ORACLE ] #写入效率 w = [ [190, 675, 40], #Oracle [15815, 9820, 11892], #GDB [94547, 81847, 57235], #SQLITE # [0, 0, 0], #SQLITE [502, 662, 403], #MySQL #[0, 0, 0], #MySQL [1631, 1599, 1502], #PostgreSQL [2004, 1849, 1524], #dameng [10111, 8000, 5600] , #ArcGIS_GDB [1100, 1000, 900] #ArcGIS_ORACLE ] #这是柱图x轴标签 ysr = ['Oracle','GDB','SQLITE','MySQL','PostgreSQL','DAMENG','ArcGIS_GDB','ArcGIS_ORACLE'] def DrawGeoDtaabse(rcount, wcount, y): #第一行 第一列图形 2,1 代表2行1列 ax1 = plt.subplot(2,1,1) #第二行 第一列图形 ax3 = plt.subplot(2,1,2) #默认时间格式 plt.sca(ax1) plt.xlabel("",color = 'r') #X轴标签 plt.ylabel("条/s",color = 'r') #Y轴标签 #plt.grid(True) 显示格网 #plt.gcf().autofmt_xdate() 显示时间 plt.legend() # 显示图例 plt.title("[读取]效率") #标题 x1 = [1,5,9,13,17,21,25,29] # x轴点效率位置 x2 = [i + 1 for i in x1] # x轴线效率位置 x3 = [i + 2 for i in x1] # x轴面效率位置 y1 = [i[0] for i in rcount] # y轴点效率位置 y2 = [i[1] for i in rcount] # y轴线效率位置 y3 = [i[2] for i in rcount] # y轴面效率位置 #占位以免 数据源标签丢失 y0 = ["","","","","","","",""] plt.bar(x1, y1, alpha=0.7, width=1, color='r',label="点", tick_label=y0) plt.bar(x3, y3, alpha=0.7, width=1, color='b',label="面", tick_label=y0) plt.bar(x2, y2, alpha=0.7, width=1, color='g',label="线", tick_label=y) #至此第一行的读取效率绘制完毕,再重复一下第二行的写效率 plt.sca(ax3) plt.xlabel("数据源",color = 'r') #X轴标签 plt.ylabel("条/s",color = 'r') #Y轴标签 #plt.grid(True) plt.legend() # 显示图例 plt.title("[写入]效率") #图标题 y1 = [i[0] for i in wcount] y2 = [i[1] for i in wcount] y3 = [i[2] for i in wcount] y0 = ["","","","","","","",""] plt.bar(x1, y1, alpha=0.7, width=0.6, color='r',label="点", tick_label=y0) plt.bar(x3, y3, alpha=0.7, width=0.6, color='b',label="面", tick_label=y0) plt.bar(x2, y2, alpha=0.7, width=0.6, color='g',label="线", tick_label=y) plt.legend() plt.show() DrawGeoDtaabse(r,w,ysr)
以上所有代码在python3.6.4上运行测试成功
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。