python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python OpenCV 基本功能

Python OpenCV超详细讲解基本功能

作者:振华OPPO

OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS,OpenCV主要倾向于实时视觉应用,并在可用时利用MMX和SSE指令,本篇文章带你了解OpenCV的基本功能

准备工作

右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库。

在这里插入图片描述

转成灰度图像

img=cv2.imread("Resources/lena.png")
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("Gray Image",imgGray)
cv2.waitKey(0)

我们来看下效果:

在这里插入图片描述

高斯模糊

img=cv2.imread("Resources/lena.png")
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur=cv2.GaussianBlur(imgGray,(7,7),0)
cv2.imshow("Gray Image",imgGray)
cv2.imshow("Blur Image",imgBlur)
cv2.waitKey(0)

我们来看下效果,左为原图,右是高斯模糊:

在这里插入图片描述

边缘检测

边缘检测Canny()方法中第一个参数是图像,第二个参数是阈值1,第三个参数是阈值2,用来显示灰度值在此范围内的边缘线。

img=cv2.imread("Resources/lena.png")
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur=cv2.GaussianBlur(imgGray,(7,7),0)
imgCanny=cv2.Canny(img,150,200)

cv2.imshow("Gray Image",imgGray)
cv2.imshow("Blur Image",imgBlur)
cv2.imshow("Canny Image",imgCanny)
cv2.waitKey(0)

我们运行看下效果:

在这里插入图片描述

膨胀运算

膨胀运算中,会用到numpy库,我们先导入一下:import numpy as np定义一下大小为5x5的卷积核:kernel=np.ones((5,5),np.uint8),数值类型是无符号整型

kernel=np.ones((5,5),np.uint8)
img=cv2.imread("Resources/lena.png")
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur=cv2.GaussianBlur(imgGray,(7,7),0)
imgCanny=cv2.Canny(img,150,200)
imgDialation=cv2.dilate(imgCanny,kernel,iterations=1)

cv2.imshow("Gray Image",imgGray)
cv2.imshow("Blur Image",imgBlur)
cv2.imshow("Canny Image",imgCanny)
cv2.imshow("Dialation Image",imgDialation)
cv2.waitKey(0)

我们看下效果,膨胀使得边缘线变得更厚,全部连接到一块。

在这里插入图片描述

腐蚀运算

我们对刚刚膨胀的图像进行腐蚀运算,就可以得到闭合的边缘图像。

kernel=np.ones((5,5),np.uint8)
img=cv2.imread("Resources/lena.png")
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur=cv2.GaussianBlur(imgGray,(7,7),0)
imgCanny=cv2.Canny(img,150,200)
imgDialation=cv2.dilate(imgCanny,kernel,iterations=1)

cv2.imshow("Gray Image",imgGray)
cv2.imshow("Blur Image",imgBlur)
cv2.imshow("Canny Image",imgCanny)
cv2.imshow("Dialation Image",imgDialation)
cv2.waitKey(0)

从左到右依次为膨胀图像、腐蚀图像、边缘检测图像

在这里插入图片描述

OK,本节内容也是非常简单的,主要是让大家熟悉下OpenCV最基础的应用。眼过千遍不如手过一遍,快去动手敲一遍吧~💘

到此这篇关于Python OpenCV超详细讲解基本功能的文章就介绍到这了,更多相关Python OpenCV 基本功能内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文