python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python matplotlib绘制折线图

python 用matplotlib绘制折线图详情

作者:盆友圈的小可爱

这篇文章主要讲诉了python 用matplotlib绘制折线图的详细内容,众所周知,matplotlib 是一款功能强大开源的数据可视化模块,凭借着强大的扩展性构建出更高级别的绘图工具接口如seaborn、ggplot,下面我们就根据之前两篇文章基础掌握折线图的绘制,需要的朋友可以参考一下

复习回顾:
众所周知,matplotlib 是一款功能强大开源的数据可视化模块,凭借着强大的扩展性构建出更高级别的绘图工具接口如seaborn、ggplot。我们来看看往期学习章节内容概述吧~

matplotlib 官网教程中,可以绘制诸如折线图、柱状图、饼图等常规图外,还有可以绘制动态图、散点图、等高线图、帽子图、多个子图等

接下来,我们将继续学习matplotlib 图表绘制具体的功能实操,掌握针对不同图表的绘制

1. 折线图概述

1.1什么是折线图?

1.2折线图使用场景

折线图自身的线条的变化,可以在图表中清晰读取到数据变化情况,可以运用的场景特点如下

1.3绘制折线图步骤

1.4案例展示

接下来我们使用折线图来展示从 10份 所有文章访问量数据展示

所有的案例用到的数据如下:

import random


x_data = ["10月{}日".format(i+1) for i in range(30)]

y_view = [random.randint(50,200) for i in range(30)]

展示10月份数据折线图:

  import matplotlib.pyplot as plt
 import random


 plt.rcParams["font.sans-serif"]=['SimHei']
 plt.rcParams["axes.unicode_minus"]=False

 x_data = ["10月{}日".format(i+1) for i in range(30)]

 y_view = [random.randint(50,200) for i in range(30)]

 plt.figure(figsize=(20,5),dpi=90)

 plt.plot(x_data,y_view)

 plt.xticks(rotation=45)
 plt.title("访问量分析")
 plt.xlabel("日期")
 plt.ylabel("访问量")

 plt.show()

2. 折线2D属性

2.1linestyle:折线样式

属性值 说明
"-" 、"solid" 默认实线显示
"--"、"dashed" 虚线
"-." "dashdot" 点划线
":"、"dotted" 虚线
"None" """"

2.2color:折线颜色

颜色简称:

属性值 说明 属性值 说明
"b"/"bule" 蓝色 "m"/"magenta" 品红
"g" /"green" 绿色 "y"/"yellow" 黄色
"r"/"red" 红色 "k"/"black" 黑色
"c"/"cyan" 青色 "w"/"white" 白色

rgb

2.3marker:坐标值标记

属性值 说明 属性值 说明
"o" ⏺️圆圈标记 "8" 八边形
"v" 🔽倒三角标记 "s" ⏹️正方形标记
"^" 🔼正三角标记 "*" ⭐星号
"<" ◀️左三角标记 "+" ➕加号
">" ▶️右三角标记 "x" X星星
"1" 向下Y标记 "D" 🔷钻石标记
"2" 向上Y标记 " "
"3" 向左Y标记 "_" _水平线标记
"4" 向右Y标记 "p" ⭐五角星标记

标记还提供其他方法

2.4fillstyle:标记填充方法

属性值 说明
"full" 整个标记
"left" 左边标记一半
"right" 右边标记一半
"bottom" 底部标记一半
"top" 顶部标记一半
"none" 无填充

2.5linewidth(lw): 直线宽度

对第一节案例添加直线属性:虚线表示,坐标用绿色左半填充圈标记

#

 直线属性
plt.plot(x_data,y_view,linestyle="--"
,marker="o",markeredgecolor="g",fillstyle="left")

更多属性:
matplotlib官网对直线2D属性有更多的介绍

3. 坐标管理

3.1坐标轴名字设置

3.2坐标轴刻度设置

参数说明:

3.3坐标轴位置设置

3.4指定坐标值标注

pyplot.annotate() 展示指定坐标点的(x,y)值

用接口参数说明:

参数 说明
txt 展示的文本
xy 注释的(x,y)
xytext xy展示的文本
color 展示的文本颜色

继续改造第一节案例:标记出最大访问,y轴移到x轴中心

max_id = np.argmax(y_view)


show_max = '['+str(x_data[max_id])+','+str(y_view[max_id])+']'


plt.figure(figsize=(20,5),dpi=90)

ax= plt.gca()

ax.spines["left"].set_position(('axes',0.5))

plt.plot(x_data,y_view,linestyle="--",marker="o",markeredgecolor="g",fillstyle="left")

plt.xticks(ticks=np.arange(0,30),rotation=60)

plt.annotate(show_max, xy=(x_data[max_id],y_view[max_id] ), xytext=(x_data[max_id],y_view[max_id]), color='r')

4. 多条折线展示图

在一个图表中,我们可以多次调用plot()绘制多条折线展示在同一个表格中

 ```python
star_view = [random.randint(100,200) for i in range(30)]

plt.plot(x_data,y_view,linestyle="--",marker="o",markeredgecolor="g",fillstyle="left")
plt.plot(x_data,star_view,linestyle="-",marker="s",markeredgecolor="r",fillstyle="right")
```
   

5. 图列管理

当一个图表中存在多个折线图时,我们需要使用图例管理来对每个折线代表对象

  1. pyplot.legend(loc): 对图表中折线进行说明
  2. loc参数属性值:

属性 代码 属性 代码
'best' 0 'right' 5
'upper right' 1 'center left' 6
'upper left' 2 'center right' 7
'lower left' 3 'lower center' 8
'lower right' 4 'upper center' 9
'center' 10

label属性,注释每条折线的对象

plt.plot(x_data,y_view,linestyle="--",marker="o",markeredgecolor="g",fillstyle="left",label="all")
plt.plot(x_data,star_view,linestyle="-",marker="s",markeredgecolor="r",fillstyle="right",label="star")

plt.legend()

总结:
本文 我们对matplotlib 模块 折线图plot()相关方法和属性进行,大家在平时工作中可以多多实践,折线图还是用的比较多的

到此这篇关于python 用matplotlib绘制折线图详情的文章就介绍到这了,更多相关python matplotlib绘制折线图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文