python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python 绘制折线图

Python数据分析之 Matplotlib 折线图绘制

作者:​ tigeriaf   ​

这篇文章主要介绍了Python数据分析之 Matplotlib 折线图绘制,在数据分析中,数据可视化也非常重要,下文通过数据分析展开对折线图的绘制,需要的小伙伴可以参考一下

一、Matplotlib 绘图

在数据分析中,数据可视化也非常重要,通过直观的展示过程、结果数据,可以帮助我们清晰的理解数据,进而更好的进行分析。接下来就说一下Python数据分析中的数据可视化工具 Matplotlib 库。

Matplotlib 是一个非常强大的Python 2D绘图库,使用它,我们可以通过图表的形式更直观的展现数据,实现数据可视化,使用起来也非常方便,而且支持绘制折线图、柱状图、饼图、直方图、散点图等。

可以使用以下命令进行安装:

pip install matplotlib
# 或者
conda install matplotlib

简单示例

绘制y=2x+1方程图:

import matplotlib.pyplot as plt

# 创建figure对象(绘画对象)
plt.figure(figsize=(4, 6))

# 绘制图像
x = [1, 2, 3, 4]
y = [2*i+1 for i in x]
plt.plot(x, y)

# 显示图像
plt.show()

结果如下:

其中:

plt.figure(num=None, figsize=None, dpi=None, ······)

常用的参数说明如下:

二、折线图绘制

折线图是一种将数据点按照顺序连起来的图形,可以体现变量y随变量x的变化情况。Matplotlib 提供了plot()函数绘制折线图,其语法格式如下:

plt.plot(*args, **kwargs)

常用参数及说明如下:

例如,绘制某地区周一到周日平均温度变化折线图:

import matplotlib.pyplot as plt
plt.figure(figsize=(10, 8))
# 周一到周日平均温度数据
plt.plot([1,2,3,4,5,6,7], [12,11,11,13,12,10,10])
plt.show()

结果输出如下:

但是可以看出,图表并不是很好看,我们可以给图表添加一些标签和图例,让图表更加清晰好看,

具体方法如下:

import matplotlib.pyplot as plt
# 设置支持中文
plt.rcParams['font.family'] = ['SimHei']
plt.figure(figsize=(10, 8))
plt.plot([1,2,3,4,5,6,7], [12,11,11,13,12,10,10], linestyle="-", marker=".")
plt.xlabel("时间")
plt.ylabel("温度")
plt.yticks([i for i in range(20)][::5])
plt.show()

结果输出如下:

到此这篇关于Python数据分析之 Matplotlib 折线图绘制的文章就介绍到这了,更多相关Python 绘制折线图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文