C 语言

关注公众号 jb51net

关闭
首页 > 软件编程 > C 语言 > C语言求逆矩阵

C语言求逆矩阵案例详解

作者:dogdng

这篇文章主要介绍了C语言求逆矩阵案例详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下

一般求逆矩阵的方法有两种,伴随阵法和初等变换法。但是这两种方法都不太适合编程。伴随阵法的计算量大,初等变换法又难以编程实现。
适合编程的求逆矩阵的方法如下:

  1. 对可逆矩阵A进行QR分解:A=QR
  2. 求上三角矩阵R的逆矩阵
  3. 求出A的逆矩阵:A^(-1)=R^(-1)Q^(H)

以上三步都有具体的公式与之对应,适合编程实现。
C语言实现代码:

#include <stdio.h>
#include <math.h>

#define SIZE  8

double b[SIZE][SIZE]={0};//应该读作“贝尔塔”,注释中用B表示
double t[SIZE][SIZE]={0};//求和的那项
double Q[SIZE][SIZE]={0};//正交矩阵
double QH[SIZE][SIZE]={0};//正交矩阵的转置共轭
double R[SIZE][SIZE]={0};//
double invR[SIZE][SIZE]={0};//R的逆矩阵
double invA[SIZE][SIZE]={0};//A的逆矩阵,最终的结果
//={0};//
double matrixR1[SIZE][SIZE]={0};
double matrixR2[SIZE][SIZE]={0};

//double init[3][3]={3,14,9,6,43,3,6,22,15};
double init[8][8]={  
    0.0938  ,  0.5201 ,   0.4424  ,  0.0196  ,  0.3912  ,  0.9493 ,   0.9899  ,  0.8256,
    0.5254  ,  0.3477 ,   0.6878  ,  0.3309 ,   0.7691  ,  0.3276 ,   0.5144  ,  0.7900,
    0.5303  ,  0.1500 ,   0.3592  ,  0.4243 ,   0.3968  ,  0.6713 ,   0.8843  ,  0.3185,
    0.8611  ,  0.5861 ,   0.7363  ,  0.2703 ,   0.8085  ,  0.4386 ,   0.5880  ,  0.5341,
    0.4849  ,  0.2621 ,   0.3947  ,  0.1971 ,   0.7551  ,  0.8335 ,   0.1548  ,  0.0900,
    0.3935  ,  0.0445 ,   0.6834  ,  0.8217 ,   0.3774  ,  0.7689 ,   0.1999  ,  0.1117,
    0.6714  ,  0.7549 ,   0.7040  ,  0.4299 ,   0.2160  ,  0.1673 ,   0.4070  ,  0.1363,
    0.7413  ,  0.2428 ,   0.4423  ,  0.8878 ,   0.7904  ,  0.8620 ,   0.7487  ,  0.6787
};
/*/
函数名:int main()
输入:
输出:
功能:求矩阵的逆 pure C language
     首先对矩阵进行QR分解之后求上三角矩阵R的逆阵最后A-1=QH*R-1,得到A的逆阵。
作者:HLdongdong
*//////////////////////////////////////////////////////////////////////
int main()
{
    int i;//数组  行
    int j;//数组  列
    int k;//代表B的角标
    int l;//数组  列
    double dev;
    double numb;//计算的中间变量
    double numerator,denominator;
    double ratio;
    /////////////////求B/////////////////
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            b[j][i]=init[j][i];
        }
        for(k=0;k<i;++k)
        {
            if(i)
            {
                numerator=0.0;
                denominator=0.0;
                for(l=0;l<SIZE;++l)
                {
                    numerator+=init[l][i]*b[l][k];
                    denominator+=b[l][k]*b[l][k];
                }
                dev=numerator/denominator;
                t[k][i]=dev;
                for(j=0;j<SIZE;++j)
                {
                    b[j][i]-=t[k][i]*b[j][k];//t  init  =0  !!!
                }
            }
        }
    }
    ///////////////////对B单位化,得到正交矩阵Q矩阵////////////////////
    for(i=0;i<SIZE;++i)
    {
        numb=0.0;
        for(j=0;j<SIZE;++j)
        {
            numb+=(b[j][i]*b[j][i]);
        }
        dev=sqrt(numb);
        for(j=0;j<SIZE;++j)
        {
            Q[j][i]=b[j][i]/dev;
        }
        matrixR1[i][i]=dev;
    }
    /////////////////////求上三角R阵///////////////////////
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            if(j<i)
            {
                matrixR2[j][i]=t[j][i];
            }
            else if(j==i)   
            {
                matrixR2[j][i]=1;
            }
            else
            {
                matrixR2[j][i]=0;
            }
        }
    }
    mulMatrix(matrixR1,matrixR2,SIZE,SIZE,SIZE,R);
///////////////////////QR分解完毕//////////////////////////
    printf("QR分解:\n");
    printf("Q=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf("%2.4f    ",Q[i][j]);
        //  
        }
        printf("\n");
    }
    printf("R=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf("%2.4f    ",R[i][j]);
        //  
        }
        printf("\n");
    }
/////////////////////求R的逆阵//////////////////////////
    for(i=SIZE-1;i>=0;--i)
    {
        invR[i][i]=1/R[i][i];
        //R[i][i]=invR[i][i];
        if(i!=(SIZE-1))//向右
        {
            for(j=i+1;j<SIZE;++j)
            {
                invR[i][j]=invR[i][j]*invR[i][i];
                R[i][j]=R[i][j]*invR[i][i];
            }
        }
        if(i)//向上
        {
            for(j=i-1;j>=0;--j)
            {
                ratio=R[j][i];
                for(k=i;k<SIZE;++k)
                {
                    invR[j][k]-=ratio*invR[i][k];
                    R[j][k]-=ratio*R[i][k];
                }
            }   
        }
    }

///////////////////////////////////////////////////////

    printf("inv(R)=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf(" %2.4f  ",invR[i][j]);
        //  
        }
        printf("\n");
    }
////////////////////结果和MATLAB差一个负号,神马鬼????????/////////////////////
/////////////////////求QH//////////////////////////
    for(i=0;i<SIZE;++i)//实矩阵就是转置
    {
        for(j=0;j<SIZE;++j)
        {
            QH[i][j]=Q[j][i];
        }
    }
///////////////////////求A的逆阵invA/////////////////////////////

    mulMatrix(invR,QH,SIZE,SIZE,SIZE,invA);

    printf("inv(A)=\n");
    for(i=0;i<SIZE;++i)
    {
        for(j=0;j<SIZE;++j)
        {
            printf(" %2.4f  ",invA[i][j]);
        //  
        }
        printf("\n");
    }

///////////////////////结果与MATLAB的结果在千分位后有出入,但是负号都是对的^v^///////////////////////////
    return 0;
}

另附上矩阵乘法的子函数

/*/
函数名:void mulMatrix(double matrix1[SIZE][SIZE],double matrix2[SIZE][SIZE],int high1,int weight,int weight2,double mulMatrixOut[SIZE][SIZE])
输入:依次是 左矩阵,右矩阵,左矩阵高度,左矩阵宽度,右矩阵宽度,输出矩阵
输出:
功能:矩阵乘法
作者:HLdongdong
*//
void mulMatrix(double matrix1[SIZE][SIZE],double matrix2[SIZE][SIZE],int high1,int weight,int weight2,double mulMatrixOut[SIZE][SIZE])
{
    int i,j,k;
    for(i=0;i<high1;++i)
    {
        for(j=0;j<weight2;j++)
        {
            for(k=0;k<weight;++k)
            {
                mulMatrixOut[i][j]+=matrix1[i][k]*matrix2[k][j];
            }
        }
    }
}

到此这篇关于C语言求逆矩阵案例详解的文章就介绍到这了,更多相关C语言求逆矩阵内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文