OpenCV结合selenium实现滑块验证码

 更新时间:2021年08月13日 10:12:02   作者:GuanLu  
本文主要介绍了OpenCV结合selenium实现滑块验证码,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

Python客栈送红包、纸质书

本次案例使用OpenCV和selenium来解决一下滑块验证码

先说一下思路:

  • 弹出滑块验证码后使用selenium元素截图将验证码整个背景图截取出来
  • 将需要滑动的小图单独截取出来,最好将小图与背景图顶部的像素距离获取到,这样可以将背景图上下多余的边框截取掉
  • 使用OpenCV将背景图和小图进行灰度处理,并对小图再次进行二值化全局阈值,这样就可以利用OpenCV在背景图中找到小图所在的位置
  • 用OpenCV获取到相差的距离后利用selenium的鼠标拖动方法进行拖拉至终点。

详细步骤:

先获取验证码背景图,selenium浏览器对象中使用screenshot方法可以将指定的元素图片截取出来

1
2
3
4
5
6
7
8
9
import os
from selenium import webdriver
 
 
browser = webdriver.Chrome()
browser.get("https://www.toutiao.com/c/user/token/MS4wLjABAAAA4EKNlqVeNTTuEdWn0VytNS8cdODKTsNNwLTxOnigzZtclro2Kylvway5mTyTUKvz/")
 
save_path = os.path.join(os.path.expanduser('~'), "Desktop", "background.png")
browser.find_element_by_id("element_id_name").screenshot(save_path)

截取后的验证码背景图和需要滑动的小图   如:

再将小图与背景图顶部的像素距离获取到,指的是下面图中红边的高度:

如果HTML元素中小图是单独存在时,那么它的高度在会定义在页面元素中,使用selenium页面元素对象的value_of_css_property方法可以获取到像素距离。

获取这个是因为要把背景图的上下两边多余部分进行切除,从而保留关键的图像部位,能够大幅度提高识别率。

1
2
element_object = browser.find_element_by_xpath("xpath_element")
px = element_object.value_of_css_property("top")

接下来就要对图像进行灰度处理:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy
import cv2
 
 
def make_threshold(img):
    """全局阈值
    将图片二值化,去除噪点,让其黑白分明"""
    x = numpy.ones(img.shape, numpy.uint8) * 255
    y = img - x
    result, thresh = cv2.threshold(y, 127, 255, cv2.THRESH_BINARY_INV)
    # 将二值化后的结果返回
    return thresh
 
 
class ComputeDistance:
    """获取需要滑动的距离
    将验证码背景大图和需要滑动的小图进行处理,先在大图中找到相似的小图位置,再获取对应的像素偏移量"""
    def __init__(self, Background_path: str, image_to_move: str, offset_top_px: int):
        """
        :param Background_path: 验证码背景大图
        :param image_to_move: 需要滑动的小图
        :param offset_top_px: 小图距离在大图上的顶部边距(像素偏移量)
        """
        self.Background_img = cv2.imread(Background_path)
        self.offset_px = offset_top_px
        self.show_img = show_img
        small_img_data = cv2.imread(image_to_move, cv2.IMREAD_UNCHANGED)
        # 得到一个改变维度为50的乘以值
        scaleX = 50 / small_img_data.shape[1]
        # 使用最近邻插值法缩放,让xy乘以scaleX,得到缩放后shape为50x50的图片
        self.tpl_img = cv2.resize(small_img_data, (0, 0), fx=scaleX, fy=scaleX)
        self.Background_cutting = None
 
    def tpl_op(self):
        # 将小图转换为灰色
        tpl_gray = cv2.cvtColor(self.tpl_img, cv2.COLOR_BGR2GRAY)
        h, w = tpl_gray.shape
        # 将背景图转换为灰色
        # Background_gray = cv2.cvtColor(self.Background_img, cv2.COLOR_BGR2GRAY)
        Background_gray = cv2.cvtColor(self.Background_cutting, cv2.COLOR_BGR2GRAY)
        # 得到二值化后的小图
        threshold_img = make_threshold(tpl_gray)
        # 将小图与大图进行模板匹配,找到所对应的位置
        result = cv2.matchTemplate(Background_gray, threshold_img, cv2.TM_CCOEFF_NORMED)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
        # 左上角位置
        top_left = (max_loc[0] - 5, max_loc[1] + self.offset_px)
        # 右下角位置
        bottom_right = (top_left[0] + w, top_left[1] + h)
        # 在源颜色大图中画出小图需要移动到的终点位置
        """rectangle(图片源数据, 左上角, 右下角, 颜色, 画笔厚度)"""
        cv2.rectangle(self.Background_img, top_left, bottom_right, (0, 0, 255), 2)
 
    def cutting_background(self):
        """切割图片的上下边框"""
        height = self.tpl_img.shape[0]
        # 将大图中上下多余部分去除,如: Background_img[40:110, :]
        self.Background_cutting = self.Background_img[self.offset_px - 10: self.offset_px + height + 10, :]
 
    def run(self):
        # 如果小图的长度与大图的长度一致则不用将大图进行切割,可以将self.cutting_background()注释掉
        self.cutting_background()
        return self.tpl_op()
 
 
if __name__ == '__main__':
    image_path1 = "背景图路径"
    image_path2 = "小图路径"
    distance_px = "像素距离"
    main = ComputeDistance(image_path1, image_path2, distance_px)
    main.run()

上面代码可以返回小图到凹点的距离,现在我们可以看一下灰度处理中的图片样子:

得到距离后还要对这个距离数字进行处理一下,要让它拆分成若干个小数,这么做的目的是在拖动的时候不能一下拖动到终点,

要模仿人类的手速缓缓向前行驶,不然很明显是机器在操控。

比如到终点的距离为100,那么要把它转为 [8, 6, 11, 10, 3, 6, 3, -2, 4, 0, 15, 1, 9, 6, -2, 4, 1, -2, 15, 6, -2] 类似的,列表中的数加起来正好为100.

最简单的转换:

1
2
3
4
5
6
7
8
9
10
def handle_distance(distance):
    """将直线距离转为缓慢的轨迹"""
    import random
    slow_distance = []
    while sum(slow_distance) <= distance:
        slow_distance.append(random.randint(-2, 15))
 
    if sum(slow_distance) != distance:
        slow_distance.append(distance - sum(slow_distance))
    return slow_distance

有了到终点的距离,接下来就开始拖动吧:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import time
from random import randint
from selenium.webdriver.common.action_chains import ActionChains
 
 
def move_slider(website, slider, track, **kwargs):
    """将滑块移动到终点位置
    :param website: selenium页面对象
    :param slider: selenium页面中滑块元素对象
    :param track: 到终点所需的距离
    """
    name = kwargs.get('name', '滑块')
 
    try:
        if track[0] > 200:
            return track[0]
        # 点击滑块元素并拖拽
        ActionChains(website).click_and_hold(slider).perform()
        time.sleep(0.15)
        for i in track:
            # 随机上下浮动鼠标
            ActionChains(website).move_by_offset(xoffset=i, yoffset=randint(-2, 2)).perform()
        # 释放元素
        time.sleep(1)
        ActionChains(website).release(slider).perform()
        time.sleep(1)
        # 随机拿开鼠标
        ActionChains(website).move_by_offset(xoffset=randint(200, 300), yoffset=randint(200, 300)).perform()
        print(f'[网页] 拖拽 {name}')
        return True
    except Exception as e:
        print(f'[网页] 拖拽 {name} 失败 {e}')

教程结束,让我们结合上面代码做一个案例吧。

访问今日头条某博主的主页,直接打开主页的链接会出现验证码。

下面代码 使用pip安装好相关依赖库后可直接运行:

调用ComputeDistance类时,参数 show_img=True 可以在拖动验证码前进行展示背景图识别终点后的区域在哪里, 如:

1
distance_obj = ComputeDistance(background_path, small_path, px, show_img=True)

OK,下面为案例代码: 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import time
import requests
import cv2
import numpy
from random import randint
 
from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
 
 
def show_image(img_array, name='img', resize_flag=False):
    """展示图片"""
    maxHeight = 540
    maxWidth = 960
    scaleX = maxWidth / img_array.shape[1]
    scaleY = maxHeight / img_array.shape[0]
    scale = min(scaleX, scaleY)
    if resize_flag and scale < 1:
        img_array = cv2.resize(img_array, (0, 0), fx=scale, fy=scale)
    cv2.imshow(name, img_array)
    cv2.waitKey(0)
    cv2.destroyWindow(name)
 
 
def make_threshold(img):
    """全局阈值
    将图片二值化,去除噪点,让其黑白分明"""
    x = numpy.ones(img.shape, numpy.uint8) * 255
    y = img - x
    result, thresh = cv2.threshold(y, 127, 255, cv2.THRESH_BINARY_INV)
    # 将二值化后的结果返回
    return thresh
 
 
def move_slider(website, slider, track, **kwargs):
    """将滑块移动到终点位置
    :param website: selenium页面对象
    :param slider: selenium页面中滑块元素对象
    :param track: 到终点所需的距离
    """
    name = kwargs.get('name', '滑块')
 
    try:
        if track[0] > 200:
            return track[0]
        # 点击滑块元素并拖拽
        ActionChains(website).click_and_hold(slider).perform()
        time.sleep(0.15)
        for i in track:
            # 随机上下浮动鼠标
            ActionChains(website).move_by_offset(xoffset=i, yoffset=randint(-2, 2)).perform()
        # 释放元素
        time.sleep(1)
        ActionChains(website).release(slider).perform()
        time.sleep(1)
        # 随机拿开鼠标
        ActionChains(website).move_by_offset(xoffset=randint(200, 300), yoffset=randint(200, 300)).perform()
        print(f'[网页] 拖拽 {name}')
        return True
    except Exception as e:
        print(f'[网页] 拖拽 {name} 失败 {e}')
 
 
class ComputeDistance:
    """获取需要滑动的距离
    将验证码背景大图和需要滑动的小图进行处理,先在大图中找到相似的小图位置,再获取对应的像素偏移量"""
    def __init__(self, Background_path: str, image_to_move: str, offset_top_px: int, show_img=False):
        """
        :param Background_path: 验证码背景大图
        :param image_to_move: 需要滑动的小图
        :param offset_top_px: 小图距离在大图上的顶部边距(像素偏移量)
        :param show_img: 是否展示图片
        """
        self.Background_img = cv2.imread(Background_path)
        self.offset_px = offset_top_px
        self.show_img = show_img
        small_img_data = cv2.imread(image_to_move, cv2.IMREAD_UNCHANGED)
        # 得到一个改变维度为50的乘以值
        scaleX = 50 / small_img_data.shape[1]
        # 使用最近邻插值法缩放,让xy乘以scaleX,得到缩放后shape为50x50的图片
        self.tpl_img = cv2.resize(small_img_data, (0, 0), fx=scaleX, fy=scaleX)
        self.Background_cutting = None
 
    def show(self, img):
        if self.show_img:
            show_image(img)
 
    def tpl_op(self):
        # 将小图转换为灰色
        tpl_gray = cv2.cvtColor(self.tpl_img, cv2.COLOR_BGR2GRAY)
        h, w = tpl_gray.shape
        # 将背景图转换为灰色
        # Background_gray = cv2.cvtColor(self.Background_img, cv2.COLOR_BGR2GRAY)
        Background_gray = cv2.cvtColor(self.Background_cutting, cv2.COLOR_BGR2GRAY)
        # 得到二值化后的小图
        threshold_img = make_threshold(tpl_gray)
        # 将小图与大图进行模板匹配,找到所对应的位置
        result = cv2.matchTemplate(Background_gray, threshold_img, cv2.TM_CCOEFF_NORMED)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
        # 左上角位置
        top_left = (max_loc[0] - 5, max_loc[1] + self.offset_px)
        # 右下角位置
        bottom_right = (top_left[0] + w, top_left[1] + h)
        # 在源颜色大图中画出小图需要移动到的终点位置
        """rectangle(图片源数据, 左上角, 右下角, 颜色, 画笔厚度)"""
        cv2.rectangle(self.Background_img, top_left, bottom_right, (0, 0, 255), 2)
        if self.show_img:
            show_image(self.Background_img)
        return top_left
 
    def cutting_background(self):
        """切割图片的上下边框"""
        height = self.tpl_img.shape[0]
        # 将大图中上下多余部分去除,如: Background_img[40:110, :]
        self.Background_cutting = self.Background_img[self.offset_px - 10: self.offset_px + height + 10, :]
 
    def run(self):
        # 如果小图的长度与大图的长度一致则不用将大图进行切割,可以将self.cutting_background()注释掉
        self.cutting_background()
        return self.tpl_op()
 
 
class TodayNews(object):
    def __init__(self):
        self.url = "https://www.toutiao.com/c/user/token/" \
                   "MS4wLjABAAAA4EKNlqVeNTTuEdWn0VytNS8cdODKTsNNwLTxOnigzZtclro2Kylvway5mTyTUKvz/"
        self.process_folder = os.path.join(os.path.expanduser('~'), "Desktop", "today_news")
        self.background_path = os.path.join(self.process_folder, "background.png")
        self.small_path = os.path.join(self.process_folder, "small.png")
        self.small_px = None
        self.xpath = {}
        self.browser = None
 
    def check_file_exist(self):
        """检查流程目录是否存在"""
        if not os.path.isdir(self.process_folder):
            os.mkdir(self.process_folder)
 
    def start_browser(self):
        """启动浏览器"""
        self.browser = webdriver.Chrome()
        self.browser.maximize_window()
 
    def close_browser(self):
        self.browser.quit()
 
    def wait_element_loaded(self, xpath: str, timeout=10, close_browser=True):
        """等待页面元素加载完成
        :param xpath: xpath表达式
        :param timeout: 最长等待超时时间
        :param close_browser: 元素等待超时后是否关闭浏览器
        :return: Boolean
        """
        now_time = int(time.time())
        while int(time.time()) - now_time < timeout:
            # noinspection PyBroadException
            try:
                element = self.browser.find_element_by_xpath(xpath)
                if element:
                    return True
                time.sleep(1)
            except Exception:
                pass
        else:
            if close_browser:
                self.close_browser()
            # print("查找页面元素失败,如果不存在网络问题请尝试修改xpath表达式")
            return False
 
    def add_page_element(self):
        self.xpath['background_img'] = '//div[@role="dialog"]/div[2]/img[1]'
        self.xpath['small_img'] = '//div[@role="dialog"]/div[2]/img[2]'
        self.xpath['slider_button'] = '//div[@id="secsdk-captcha-drag-wrapper"]/div[2]'
 
    def process_main(self):
        """处理页面内容"""
        self.browser.get(self.url)
 
        for _ in range(10):
            if self.wait_element_loaded(self.xpath['background_img'], timeout=5, close_browser=False):
                time.sleep(1)
                # 截图
                self.browser.find_element_by_xpath(self.xpath['background_img']).screenshot(self.background_path)
                small_img = self.browser.find_element_by_xpath(self.xpath['small_img'])
                # 获取小图片的URL链接
                small_url = small_img.get_attribute("src")
                # 获取小图片距离背景图顶部的像素距离
                self.small_px = small_img.value_of_css_property("top").replace("px", "").split(".")[0]
 
                response = requests.get(small_url)
                if response.ok:
                    with open(self.small_path, "wb") as file:
                        file.write(response.content)
 
                time.sleep(1)
                # 如果没滑动成功则刷新页面重试
                if not self.process_slider():
                    self.browser.refresh()
                    continue
            else:
                break
 
    @staticmethod
    def handle_distance(distance):
        """将直线距离转为缓慢的轨迹"""
        import random
        slow_distance = []
        while sum(slow_distance) <= distance:
            slow_distance.append(random.randint(-2, 15))
 
        if sum(slow_distance) != distance:
            slow_distance.append(distance - sum(slow_distance))
        return slow_distance
 
    def process_slider(self):
        """处理滑块验证码"""
 
        distance_obj = ComputeDistance(self.background_path, self.small_path, int(self.small_px), show_img=False)
        # 获取移动所需的距离
        distance = distance_obj.run()
 
        track = self.handle_distance(distance[0])
        track.append(-2)
        slider_element = self.browser.find_element_by_xpath(self.xpath['slider_button'])
 
        move_slider(self.browser, slider_element, track)
        time.sleep(2)
 
        # 如果滑动完成则返回True
        if not self.wait_element_loaded(self.xpath['slider_button'], timeout=2, close_browser=False):
            return True
        else:
            return False
 
    def run(self):
        self.check_file_exist()
        self.start_browser()
        self.add_page_element()
        self.process_main()
        # self.close_browser()
 
 
if __name__ == '__main__':
    main = TodayNews()
    main.run()

到此这篇关于OpenCV结合selenium实现滑块验证码的文章就介绍到这了,更多相关OpenCV selenium滑块验证码内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
蓄力AI

微信公众号搜索 “ 脚本之家 ” ,选择关注

程序猿的那些事、送书等活动等着你

原文链接:https://blog.51cto.com/u_15163980/3301857

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权/违法违规/事实不符,请将相关资料发送至 reterry123@163.com 进行投诉反馈,一经查实,立即处理!

相关文章

  • python中内置函数range详解

    python中内置函数range详解

    Python内置函数range()是一个用于生成一系列连续的整数的函数,它常用于循环结构中,用于指定循环的次数或迭代的范围,这篇文章主要介绍了python之内置函数range,需要的朋友可以参考下
    2023-07-07
  • python导出hive数据表的schema实例代码

    python导出hive数据表的schema实例代码

    这篇文章主要介绍了python导出hive数据表的schema实例代码,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • Python实现二叉树的常见遍历操作总结【7种方法】

    Python实现二叉树的常见遍历操作总结【7种方法】

    这篇文章主要介绍了Python实现二叉树的常见遍历操作,结合实例形式总结分析了二叉树的前序、中序、后序、层次遍历中的迭代与递归等7种操作方法,需要的朋友可以参考下
    2019-03-03
  • Python编程使用PyQt5库实现动态水波进度条示例

    Python编程使用PyQt5库实现动态水波进度条示例

    这篇文章主要介绍了Python编程使用PyQt5库实现动态水波进度条的示例代码解析,有需要的朋友可以借鉴参考下希望能够有所帮助,祝大家多多进步早日升职加薪
    2021-10-10
  • python实现盲盒抽奖功能(减库存)

    python实现盲盒抽奖功能(减库存)

    本文主要介绍了python实现盲盒抽奖功能,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-09-09
  • Python编程django实现同一个ip十分钟内只能注册一次

    Python编程django实现同一个ip十分钟内只能注册一次

    这篇文章主要介绍了Python编程django实现同一个ip十分钟内只能注册一次的相关内容,具有一定参考价值。需要的朋友可以了解下。
    2017-11-11
  • 解析django的csrf跨站请求伪造

    解析django的csrf跨站请求伪造

    本文主要介绍了解析django的csrf跨站请求伪造,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-08-08
  • python回溯算法实现全排列小练习分享

    python回溯算法实现全排列小练习分享

    这篇文章主要给大家分享的是python回溯算法实现全排列小练习,文章根据例子:输入列表L(不含重复元素),输出L的全排列展开学习,需要的小伙伴可以参考一下
    2022-02-02
  • python数字图像处理图像的绘制详解

    python数字图像处理图像的绘制详解

    这篇文章主要为大家介绍了python数字图像处理图像的绘制示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • Pandas中Apply函数加速百倍的技巧分享

    Pandas中Apply函数加速百倍的技巧分享

    虽然目前dask,cudf等包的出现,使得我们的数据处理大大得到了加速,但是并不是每个人都有比较好的gpu。本文为大家分享几个Pandas中Apply函数加速百倍的技巧,希望有所帮助
    2022-07-07

最新评论