python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python XGBoost机器学习

python机器学习XGBoost梯度提升决策树的高效且可扩展实现

作者:程序员小寒

这篇文章主要为大家介绍了python机器学习XGBoost梯度提升决策树的高效且可扩展实现,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

python库XGBoost

今天给大家分享一个神奇的 python 库,XGBoost

https://github.com/dmlc/xgboost

XGBoost 是 eXtreme Gradient Boosting 的缩写,是一个开源的 python 库,它提供了梯度提升决策树的高效且可扩展的实现。XGBoost 专为速度和性能而设计,广泛应用于机器学习竞赛和实际应用中。它支持各种目标函数,包括回归、分类和排名任务。

为什么选择 XGBoost?

XGBoost 的工作原理

XGBoost 是梯度提升的一种形式,是一种强大的机器学习技术,用于回归和分类任务。梯度提升涉及通过添加弱学习器(通常是决策树)来增量构建模型,以纠正现有模型的错误。该过程通过将新模型拟合先前模型的残差来迭代地改进预测。

XGBoost 涉及三个主要组件:要最小化的损失函数、进行预测的弱学习器以及添加弱学习器以最小化损失函数的加性模型。

XGBoost 还实现了树的修剪、正则化和处理缺失值等各种技术,使其成为一种强大的算法。

何时使用 XGBoost

以下是一些需要考虑的准则。

代码示例

以下是在 Python 中使用 XGBoost 进行分类的基本示例。

在此示例中,我们使用 Iris 数据集,这是机器学习中流行的数据集。我们将数据分为训练集和测试集,创建 XGBoost 分类器,在训练数据上对其进行训练,然后在测试数据上评估其性能。

import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
# Load dataset
iris = load_iris()
X, y = iris.data, iris.target
print('X shape:', X.shape)
print('y shape:', y.shape)
# Split dataset into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42)
# Instantiate an XGBoost classifier
model = xgb.XGBClassifier()
# Train the model
model.fit(X_train, y_train)
# Make predictions
predictions = model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, predictions)
print('y_test:', y_test)
print('predictions:', predictions)
print(f"Accuracy: {accuracy * 100:.2f}%")
# Feature importance
feature_importance = model.feature_importances_
# Plotting feature importance
plt.barh(iris.feature_names, feature_importance)
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
plt.title('Visualizing Important Features with XGBoost')
plt.show()

以上就是python机器学习XGBoost梯度提升决策树的高效且可扩展实现的详细内容,更多关于python XGBoost机器学习的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文