java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java IO流

Java IO流深入理解

作者:evanYang_

这篇文章主要介绍了java IO流的深入理解,下面和小编来一起学习一下吧,希望能给你带来帮助,也希望您能够多多关注脚本之家的更多内容

阻塞(Block)和非阻塞(Non-Block)

阻塞和非阻塞是进程在访问数据的时候,数据是否准备就绪的一种处理方式,当数据没有准备的时候。

**阻塞:**往往需要等待缓冲区中的数据准备好过后才处理其他的事情,否者一直等待在那里

**非阻塞:**当我们进程访问我们的数据缓冲区的时候,如果数据没有准备好则直接返回,不会等待。如果数据已经准备好,也直接返回。

同步(Synchronization)和异步(Asynchronous)

同步和异步都是基于应用程序和操作系统处理IO事件所采用的方式。比如同步:是应用程序要直接参与IO读写的操作。异步:所有的IO读写交给操作系统去处理,应用程序只需要等待通知。

同步方式在处理IO事件的时候,必须阻塞在某个方法上面等待我们的IO事件完成(阻塞IO事件或者通过轮询IO事件的方式),对于异步来说,所有的IO读写都交给了操作系统。这个时候,我们可以去做其他的事情,并不需要去完成真正的IO操作,当操作完成iO后,会给我们的应用程序一个通知。

**同步:**阻塞到IO事件,阻塞到read或者write。这个时候我们就完全不能做自己的事情。让读写方法加入到线程里面,然后阻塞线程来实现,对线程的性能开销比较大。

BIO与NIO对比

IO模型 BIO NIO
通信 面向流(乡村公路) 面向缓冲(高速公路,多路复用技术)
处理 阻塞IO(多线程) 非阻塞IO(反应堆Reactor)
触发 选择器 轮询机制

面向流与面向缓冲

java NIO和BIO之间第一个最大的区别是,BIO是面向流的,NIO是面向缓冲的。Java BIO面向流意味着每次从流中读一个或多个字节,直至读取所有的字节,它们没有被缓存在任何地方。此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的数据,需要先将它缓存到一个缓冲区。Java NIO的缓冲导向方法略有不同。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否缓冲区包含了所有您需要处理的数据。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的数据。

阻塞与非阻塞

Java BIO的各种流是阻塞的。这意味着,当一个线程调用read()和write()时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了。java NIO的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么多不会获取。而不是保持线程阻塞,所以直至数据变得可以读取之前,该线程可以继续做其他的事情。

非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。线程通常将非阻塞IO的空闲时间用于在其他通道上执行IO操作,所以一个单独的线程现在可以管理多个输入和输出通道。

选择器的问世

java NIO的选择器(Selector)允许一个单独的线程来监视多个输入通道,你可以注册多个通道使用一个选择器,然后使用一个单独的线程来“选择”通道,这些通道里已经有可以处理的输入,或者选择已准备写入的通道。这种选择机制,使得一个单独的线程很容易来管理多个通道。

Java NIO三件套

在NIO中有几个核心对象需要掌握:缓冲器(Buffer)选择器(Selector)通道(Channel)

缓冲区Buffer

缓冲区实际上是一个容器对象,更直接的说,其实就是一个数组,在NIO库中,所有数据都是用缓冲区出来的。在读取数据时,它是直接读到缓冲区的;在写入数据时,它也是写入到缓冲区的;任何时候访问NIO中的数据,都是将它放到缓冲区中。而在面向流I/O系统中,所有数据都是直接写入或者直接将数据读取到Stream对象中。

在NIO中,所有的缓冲区类型都继承于抽象类Buffer,最常用的就是ByteBuffer,对于java中的基本类型,基本都有一个具体Buffer类型与之相对于,他们之间的extend关系如下图所示。

在这里插入图片描述

eg:

  public static void main(String[] args) {
        //new NIOServerDemo(8080).listen();

        // 分配新的 int 缓冲区,参数为缓冲区容量
        // 新缓冲区的当前位置将为零,其界限(限制位置)将为其容量。它将具有一个底层实现数组,其数组偏移量将为零。
        IntBuffer buffer = IntBuffer.allocate(8);
        for (int i = 0; i < buffer.capacity(); ++i) {
            int j = 2 * (i + 1);
            // 将给定整数写入此缓冲区的当前位置,当前位置递增
            buffer.put(j);
        }
        // 重设此缓冲区,将限制设置为当前位置,然后将当前位置设置为 0
        buffer.flip();
        // 查看在当前位置和限制位置之间是否有元素
        while (buffer.hasRemaining()) {
            // 读取此缓冲区当前位置的整数,然后当前位置递增
            int j = buffer.get();
            System.out.print(j + " ");
        }
    }
2 4 6 8 10 12 14 16 
Process finished with exit code 0

Buffer的基本的原理

在谈到缓冲区时,我们说缓冲区对象本质上是一个数组,但它其实是一个特殊的数组,缓冲区对象内置了一些机制,能够跟踪和记录缓冲区的状态变化情况。如果我们使用get()方法从缓冲区获取数据或者使用put()方法把数据写入缓冲区,都会引起缓冲区状态的变化。

在缓冲区中,最重要的属性有下面三个,它们一起合作完成对缓冲区内部的状态的变化跟踪。

position: 指定下一个将要被写入或者读取的元素索引,它的值由get()/put()方法自动更新,在新创建一个Buffer对象时,position被初始化为0.

limit:指定还有多少数据需要取出(在从缓冲区写入通道时),或者还有多少空间可以放入数据(在从通道读入缓冲区时)

**capacity:**制定了可以存储在缓冲区中的最大数据容量,实际上,它制定了底层数组的大小,或者至少是指定了准许我们使用的底层数组的容量。

以上三个属性值之间有一些相对大小的关系: 0<=positon<=limit<=capacity。如果我们创建一个新的容量大小为10的ByteBuffer对象,在初始化的时候,positon设置为0,limit和capacity被设置为10,在以后使用ByteBuffer对象过程中,capacity的值不会再发生变化,而其他两个将会随着使用而变化。

eg:

package com.evan.netty.nio.demo;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.nio.Buffer;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

/**
 * @author evanYang
 * @version 1.0
 * @date 2021/7/26 11:29
 */
public class BufferDemo {
    public static void main(String[] args) throws IOException {

        FileInputStream fin = new FileInputStream("D://evan.txt");
        FileChannel fc = fin.getChannel();
        //先分配一个10大小的缓冲区
        ByteBuffer buffer = ByteBuffer.allocate(10);
        outPut("初始化",buffer);

        fc.read(buffer);
        outPut("调用read()方法",buffer);

        buffer.flip();
        outPut("调用flip()",buffer);

        //判断有没有可读数据
        while (buffer.remaining()>0){
            byte b = buffer.get();
        }

        outPut("调用get()",buffer);

        //可以理解为解锁
        buffer.clear();
        outPut("调用clear()",buffer);

        fin.close();
    }

    /**
     * 打印缓存实时状况
     * @param step
     * @param buffer
     */
    public static void outPut(String step, Buffer buffer){
        System.out.println(step+":");
        System.out.println("capacity: "+buffer.capacity()+",");
        System.out.println("position: "+buffer.position()+",");
        System.out.println("limit: "+buffer.limit());
        System.out.println();
    }
}

文件中的数据

在这里插入图片描述

输出结果:

在这里插入图片描述

运行结果我们已经可以知道,四个属性值分别如图所示:

在这里插入图片描述

我们可以从管道中读取一些数据到缓冲区,注意从通道读取数据,相当于往缓冲区写入数据。如果读取4个自己的数据,则此时position的值为4,即下一个将要被下入的字节索引是4,而limit仍然是10,如下图所示:

在这里插入图片描述

下一步把读取的数据写入到输出管道中,相当于从缓冲区中读取数据,在此之前,必须调用flip()方法,该方法将会完成两件事:

1,把limit设置为当前的positon值

2,把position设置为0

由于position被设置为0,所以可以保证在下一步输出时读取到的是缓冲区中的第一个字节,而limit被设置为当前的position,可以保证读取的数据正好是之前写入到缓冲区的数据,如下图所示。

在这里插入图片描述

现在调用get()方法从缓冲区读取数据写入到输出通道,这会导致position的增加而limit保持不变,单position不会超过limit的值,所以在读取我们之前写入到缓冲区中的4个自己之后,position和limit的值都为4.如下图所示。

在这里插入图片描述

在从缓冲区读取数据完毕后,limit的值仍然保持在我们调用flip()方法时的值,调用clean()方法能够把所有的状态设置为初始值。

缓冲区分配

在前面的几个例子中,我们已经看过了,在创建一个缓冲对象时,会调用静态方法allocate()来指定缓冲区的容量,其实调用allocate()相当于创建一个指定大小的数组,并把它包装为缓冲区对象。或者我们也可以直接将一个现有的数组,包装为缓冲区对对象

选择器Selector

传统的Server/Client 模式会基于TPR(Thread per Request),服务器会为每个客户端请求建立一个线程,由该线程单独负责处理一个客户请求。这种模式带来的一个问题就是线程数量的剧增,大量的线程会增大服务器的开销。大多数的实现为了避免这个问题,都采用了线程池模型,并设置线程池模型的最大数量,这又带来了新的问题,如果线程池中有200个线程,而有200个用户都在进行大文件下载,会导致第201个用户的请求无法及时处理,即便第201个用户只想请求一个几kb大小的页面。传统的Server/Client模式如下图所示。

在这里插入图片描述

NIO 中非阻塞I/O采用了基于Reactor模式的工作模式,I/O调用不会被阻塞,相反是注册感兴趣的特定I/O事件,如可读数据到达,新的套接字连接等等,在发生特定事件时,系统在通知我们。NIO中实现非阻塞I/O的核心对象就是Selector,Selector就是注册各种I/O事件地方,而且当那些事件发生时,就是这个对象告诉我们所发生的事件。如下图所示。

在这里插入图片描述

从图中可以看出,当有读或写等任何注册的时间发生时,可以从Selector中获得相应的SelectionKey,同时从SelectionKey中可以找到发生的事件和该事件所发生的具体SelectableChannel,以获得客户端发送过来的数据。

使用NIO中非阻塞I/O编写服务器处理程序,大体上可以分为下面三个步骤:

1,向Selector对象注册感兴趣的事件。

2,从Selector中获取感兴趣的事件。

3,根据不同的事件进行相应的处理。

通道Channel

通道是一个对象,通过它可以读取和写入数据,当然了所有数据都通过Buffer对象来处理。我们永远不会将字节直接写入通道中,相反是将数据写入包含一个或者多个字节的缓存区。同样不会直接从通道中读取字节,而是将数据从通道读入缓存区,再从缓冲区获取这个字节,而是将数据从通道读入缓冲区,再从缓冲区获取这个字节。

在NIO中,提供了多种通道对象,而所有的通道对象都实现了Channel接口。它们之间的继承关系如下图所示:

在这里插入图片描述

使用NIO读取数据

在前面我们说过,任何时候读取数据,都不是直接从通道读取,而是从通道读取到缓冲区。所以使用NIO读取数据可以分为下面三个步骤:

1,从FileInputStream获取Channel

2,创建Buffer

3,将数据从Channel读取到Buffer中

package com.evan.netty.nio.demo;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.nio.Buffer;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

/**
 * @author evanYang
 * @version 1.0
 * @date 2021/7/26 16:15
 */
public class FileInputDemo {
    public static void main(String[] args) throws IOException {
        FileInputStream fin=new FileInputStream("D://evan.txt");
        FileChannel channel = fin.getChannel();

        ByteBuffer allocate = ByteBuffer.allocate(1024);
        //读取数据到缓冲区
        channel.read(allocate);

        allocate.flip();
        while (allocate.remaining()>0){
            byte b = allocate.get();
            System.out.println(b);
        }
        fin.close();
    }
}

使用NIO写入数据

使用NIO写入数据与读取数据的过程类似,同样数据不是直接写入通道,而是写入缓冲区,可以分为下面三个步骤:

1,从FileputStream获取channel。

2,创建Buffer

3,将数据从Channel写入到Buffer中,

package com.evan.netty.nio.demo;

import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

/**
 * @author evanYang
 * @version 1.0
 * @date 2021/7/26 16:33
 */
public class FileOutPutDemo {
    static private final byte message[] ={83, 111, 109, 101, 32, 98, 121, 116, 101, 115, 46 };
    public static void main(String[] args) throws IOException {
        FileOutputStream fout=new FileOutputStream("D://evan.txt");

        FileChannel channel = fout.getChannel();

        ByteBuffer buffer = ByteBuffer.allocate(1024);
        for (int i = 0; i < message.length; i++) {
            buffer.put(message[i]);
        }
        buffer.flip();
        channel.write(buffer);
        fout.close();
    }
}

在这里插入图片描述

IO多路复用

我们试想一下这样的现实场景。

100桌客人到店点菜

方法A:

服务员都把仅有的一份菜单递给其中一桌客人,然后站在这个客人身旁等待客人完成点菜过程。。。。。

方法B:

老板马上新雇佣99名服务员,同时印制99本新的菜单。没人服务一桌客人。

在这里插入图片描述

方法C:

改进点菜的方式,当客人到店后,自己申请一本菜单。想好自己要点的菜,然后呼叫服务员。服务员站在自己身边记录客人点的菜的内容。

在这里插入图片描述

总结

本篇文章就到这里了,希望能给你带来帮助,也希望您能够多多关注脚本之家的更多内容!

您可能感兴趣的文章:
阅读全文