docker安装单点elasticsearch过程
作者:康提扭狗兔
安装elasticsearch
1.部署单点es
1.1.创建网络
因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。
这里先创建一个网络:
docker network create es-net
1.2.拉取镜像
# 导入数据 docker pull elasticsearch:7.17.5 docker pull kibana:7.17.5
1.3.运行
运行docker命令,部署单点es:
docker run -d --name es -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" -e "discovery.type=single-node" -v es-data:/usr/share/elasticsearch/data -v es-plugins:/usr/share/elasticsearch/plugins --privileged --network es-net -p 9200:9200 -p 9300:9300 elasticsearch:7.12.1 docker run -d \ --name es \ -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \ -e "discovery.type=single-node" \ -v es-data:/usr/share/elasticsearch/data \ -v es-plugins:/usr/share/elasticsearch/plugins \ --privileged \ --network es-net \ -p 9200:9200 \ -p 9300:9300 \ elasticsearch:7.17.5
命令解释:
-e "cluster.name=es-docker-cluster"
:设置集群名称-e "http.host=0.0.0.0"
:监听的地址,可以外网访问-e "ES_JAVA_OPTS=-Xms512m -Xmx512m"
:内存大小-e "discovery.type=single-node"
:非集群模式-v es-data:/usr/share/elasticsearch/data
:挂载逻辑卷,绑定es的数据目录-v es-logs:/usr/share/elasticsearch/logs
:挂载逻辑卷,绑定es的日志目录-v es-plugins:/usr/share/elasticsearch/plugins
:挂载逻辑卷,绑定es的插件目录--privileged
:授予逻辑卷访问权--network es-net
:加入一个名为es-net的网络中-p 9200:9200
:端口映射配置,http访问的入口- -p 9300:9300:tcp协议端口,用于集群模式下节点与节点之间的心跳检查的
在浏览器中输入:http://192.168.xxx.xxx:9200 即可看到elasticsearch的响应结果:
2.部署kibana
kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。
2.1.部署
运行docker命令,部署kibana
docker run -d \ --name kibana \ -e ELASTICSEARCH_HOSTS=http://es:9200 \ --network=es-net \ -p 5601:5601 \ kibana:7.12.1 docker run -d \ --name kibana \ -e ELASTICSEARCH_HOSTS=http://es:9200 \ --network=es-net \ -p 5601:5601 \ kibana:7.17.5
--network es-net
:加入一个名为es-net的网络中,与elasticsearch在同一个网络中-e ELASTICSEARCH_HOSTS=http://es:9200"
:设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch-p 5601:5601
:端口映射配置
kibana启动一般比较慢,需要多等待一会,可以通过命令:
docker logs -f kibana
查看运行日志,当查看到下面的日志,说明成功:
此时,在浏览器输入地址访问:http://192.168.xxx.xxx:5601,即可看到结果
2.2.DevTools
kibana中提供了一个DevTools界面:
这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。
DSL就是elasticsearch提供的特殊语法,基本格式如下:
[请求方式] /[请求路径] { [请求参数key1]: [请求参数value1], [请求参数key2]: [请求参数value2] }
例如:
GET /_analyze { "analyzer": "standard", "text": "哈哈哈哈哈哈" }
3.安装IK分词器
默认是没有安装ik分词器的
3.1.在线安装ik插件(较慢)
# 进入容器内部 docker exec -it es /bin/bash # 在线下载并安装 注意版本与es匹配!!!! ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip #退出 exit #重启容器 docker restart elasticsearch
3.2.离线安装ik插件(推荐)
1)查看数据卷目录
安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录
通过下面命令查看:
docker volume inspect es-plugins
显示结果:
[ { "CreatedAt": "2022-05-06T10:06:34+08:00", "Driver": "local", "Labels": null, "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data", "Name": "es-plugins", "Options": null, "Scope": "local" } ]
说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data
这个目录中。
2)解压缩分词器安装包
3)上传到es容器的插件数据卷中
4)重启容器
# 4、重启容器 docker restart es
# 查看es日志 docker logs -f es
5)测试:
IK分词器包含两种模式:
ik_smart
:最少切分ik_max_word
:最细切分
GET /_analyze { "analyzer": "ik_smart", "text": "百度百科是一部内容开放、自由的网络百科全书,旨在创造一个涵盖所有领域知识,服务所有互联网用户的中文知识性百科全" }
结果:
3.3 扩展词词典
随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。
所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。
1)打开IK分词器config目录:
2)在IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--> <entry key="ext_dict">ext.dic</entry> </properties>
3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
- 奥力给
- 小黑子
4)重启elasticsearch
docker restart es # 查看 日志 docker logs -f elasticsearch
Dict Loading
日志中已经成功加载ext.dic配置文件
5)测试效果:
GET /_analyze { "analyzer": "ik_max_word", "text": "这是一个小黑子,奥力给!" }
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
3.4 停用词词典
在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。
IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。
1)IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典--> <entry key="ext_dict">ext.dic</entry> <!--用户可以在这里配置自己的扩展停止词字典 *** 添加停用词词典--> <entry key="ext_stopwords">stopword.dic</entry> </properties>
3)在 stopword.dic 添加停用词
刘/德/华
4)重启elasticsearch
# 重启服务 docker restart elasticsearch docker restart kibana # 查看 日志 docker logs -f elasticsearch
日志中已经成功加载stopword.dic配置文件
5)测试效果:
GET /_analyze { "analyzer": "ik_max_word", "text": "刘/德/华/给我点赞,奥力给!" }
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
4.部署es集群
我们会在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。
部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间
4.1.创建es集群
首先编写一个docker-compose文件,内容如下:
version: '2.2' services: es01: image: elasticsearch:7.12.1 container_name: es01 environment: - node.name=es01 - cluster.name=es-docker-cluster - discovery.seed_hosts=es02,es03 - cluster.initial_master_nodes=es01,es02,es03 - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ulimits: memlock: soft: -1 hard: -1 volumes: - data01:/usr/share/elasticsearch/data ports: - 9200:9200 networks: - elastic es02: image: elasticsearch:7.12.1 container_name: es02 environment: - node.name=es02 - cluster.name=es-docker-cluster - discovery.seed_hosts=es01,es03 - cluster.initial_master_nodes=es01,es02,es03 - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ulimits: memlock: soft: -1 hard: -1 volumes: - data02:/usr/share/elasticsearch/data ports: - 9201:9200 networks: - elastic es03: image: elasticsearch:7.12.1 container_name: es03 environment: - node.name=es03 - cluster.name=es-docker-cluster - discovery.seed_hosts=es01,es02 - cluster.initial_master_nodes=es01,es02,es03 - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ulimits: memlock: soft: -1 hard: -1 volumes: - data03:/usr/share/elasticsearch/data ports: - 9202:9200 networks: - elastic volumes: data01: driver: local data02: driver: local data03: driver: local networks: elastic: driver: bridge
Run docker-compose
to bring up the cluster:
docker-compose up -d
4.2.集群状态监控
kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。
这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。