elasticsearch 组件基于单机的多实例集群部署方法
作者:终点就在前方
声明:
本示例主要作为测试用,生产请慎重。
最近公司突发奇想,想让我们搞个单机多实例的 es 的集群,看看其性能咋样。通常来说,es 作为搜索引擎,应用场景不乏日志分析、网络安全、搜索引擎等,有时也会用作日志数据库使用,毕竟其出色的搜索查询性能,不是同等量级 关系型数据库可以比拟的,主要还是因为其 倒排索引 的特殊性,这里不讨论 倒排索引 与 B+ Tree 的性能,我们主要看看这种集群怎么组建的。
环境准备:
- ubuntu,24核,64G
- docker 20.10.2
因为是 es 集群,我们准备通过 docker 来创建实例,所以之前你还得先 pull es、kibana 的 image:
docker pull elasticsearch:6.8.23 docker pull kibana:6.8.23
如果你的容器有限,可以直接通过脚本运行 docker run,但是如果容器数量多还有相关依赖,建议通过 容器编排 起容器,当然数量更大的情况下,建议通过 k8s 部署。
我们的集群主要包含 3 个 es 节点,外加一个 kibana 作为观测,所以通过 docker-compose 作为容器编排,相对合适。
接下来是我们的编排定义:docker-compose.yml
version: "2.3" services: es-0: image: elasticsearch:6.8.23 hostname: es-0 container_name: es-0 environment: - bootstrap.memory_lock=true ulimits: memlock: soft: -1 hard: -1 cap_add: - IPC_LOCK volumes: - /var/xxx/es_cluster/es-0:/usr/share/elasticsearch/data # 容器数据映射 - ./es_cluster/es-0/elasticsearch:/etc/default/elasticsearch # elasticsearch 文件映射 - ./es_cluster/es-0/config:/usr/share/elasticsearch/config # 配置映射,主要是 elasticsearch.yaml 和 jvm.options - /var/log/es_cluster/es-0/logs:/usr/share/elasticsearch/logs # 日志映射 - /usr/share/zoneinfo/Asia/Shanghai:/etc/localtime # 时间 - /etc/timezone:/etc/timezone #- ./elasticsearch/jvm.options:/etc/elasticsearch/jvm.options ports: - "9200:9200" # 端口映射 command: elasticsearch logging: options: max-size: "200M" max-file: "5" networks: app_net: ipv4_address: 172.238.238.219 healthcheck: test: ["CMD", "curl", "-f", "-s", "http://172.238.238.219:9200/_cluster/health?wait_for_status=yellow&timeout=50s"] interval: 30s timeout: 10s retries: 20 restart: always es-1: image: elasticsearch:6.8.23 hostname: es-1 container_name: es-1 environment: - bootstrap.memory_lock=true ulimits: memlock: soft: -1 hard: -1 cap_add: - IPC_LOCK volumes: - /var/xxx/es_cluster/es-1:/usr/share/elasticsearch/data - ./es_cluster/es-1/elasticsearch:/etc/default/elasticsearch - ./es_cluster/es-1/config:/usr/share/elasticsearch/config - /var/log/es_cluster/es-1/logs:/usr/share/elasticsearch/logs - /usr/share/zoneinfo/Asia/Shanghai:/etc/localtime - /etc/timezone:/etc/timezone #- ./elasticsearch/jvm.options:/etc/elasticsearch/jvm.options ports: - "9201:9201" command: elasticsearch logging: options: max-size: "200M" max-file: "5" networks: app_net: ipv4_address: 172.238.238.229 healthcheck: test: ["CMD", "curl", "-f", "-s", "http://172.238.238.229:9200/_cluster/health?wait_for_status=yellow&timeout=50s"] interval: 30s timeout: 10s retries: 20 restart: always es-2: image: elasticsearch:6.8.23 hostname: es-2 container_name: es-2 environment: - bootstrap.memory_lock=true ulimits: memlock: soft: -1 hard: -1 cap_add: - IPC_LOCK volumes: - /var/xxx/es_cluster/es-2:/usr/share/elasticsearch/data - ./es_cluster/es-2/elasticsearch:/etc/default/elasticsearch - ./es_cluster/es-2/config:/usr/share/elasticsearch/config - /var/log/es_cluster/es-2/logs:/usr/share/elasticsearch/logs - /usr/share/zoneinfo/Asia/Shanghai:/etc/localtime - /etc/timezone:/etc/timezone #- ./elasticsearch/jvm.options:/etc/elasticsearch/jvm.options ports: - "9202:9202" command: elasticsearch logging: options: max-size: "200M" max-file: "5" networks: app_net: ipv4_address: 172.238.238.239 healthcheck: test: ["CMD", "curl", "-f", "-s", "http://172.238.238.239:9200/_cluster/health?wait_for_status=yellow&timeout=50s"] interval: 30s timeout: 10s retries: 20 restart: always kibana: image: kibana:6.8.23 hostname: kibana container_name: kibana volumes: - ./kibana/kibana.yml:/usr/share/kibana/config/kibana.yml - /usr/share/zoneinfo/Asia/Shanghai:/etc/localtime - /etc/timezone:/etc/timezone - ./kibana/kibana.keystore:/usr/share/kibana/data/kibana.keystore ports: - "5601:5601" networks: app_net: ipv4_address: 172.238.238.242 restart: always logging: options: max-size: "200M" max-file: "5" networks: app_net: driver: bridge ipam: driver: default config: - subnet: 172.238.238.0/24
这里限定 docker 的网络网段。
然后我们要看看对应的其他准备。
主要看我们的对应到主机中的 data 目录,所以参考 yml 中的相关映射,注意创建相关目录。
这里我们主要看看相关的 elasticsearch.yaml 和 jvm.options。
elasticsearch.yml
cluster: name: logserver ################# node.name: es-0 # 其他节点类似,修改 node name discovery.zen.ping.unicast.hosts: ["es-0", "es-1", "es-2"] network.host: 0.0.0.0 discovery.zen.minimum_master_nodes: 2 gateway.recover_after_nodes: 3 http.port: 9200 transport.tcp.port: 9300 node.master: true node.data: true http.host: 0.0.0.0 http: enabled: true compression: true cors: enabled: true allow-origin: "*" bootstrap.memory_lock: true bootstrap.system_call_filter: false path.data: /usr/share/elasticsearch/data #cluster.routing.allocation.disk.threshold_enabled: true #cluster.routing.allocation.disk.watermark.flood_stage: 80gb #cluster.routing.allocation.disk.watermark.high: 100gb #cluster.routing.allocation.disk.watermark.low: 120gb ##Lock memory, do not write swap #bootstrap.mlockall: true ##The cache type is set to Soft Reference, ##and is reclaimed only if there is not enough memory #index.cache.field.max_size: 50000 #index.cache.field.expire: 10m #index.cache.field.type: soft ##Weighing the performance of the index and the timeliness of retrieval #index.translog.flush_threshold_ops: 10000 #index.refresh_interval: 1 #number_of_replicas: 0 #indices.lifecycle.poll_interval: 5m xpack.ml.enabled: false
jvm.options
... # Xms represents the initial size of total heap space # Xmx represents the maximum size of total heap space -Xms16g # 主机内存64G,每个实例分配16G -Xmx16g ################################################################ ## Expert settings ################################################################ ## ...
这两个文件按照上面内容修改。
接下来是 kibana.yml:
... elasticsearch.url: "http://172.xxx.xxx.xxx:9200" # 根据实际情况,填入自己的主机ip ...
接下来通过 docker-compose 命令就可以起容器了。
docker-compsoe up -d # 后台运行容器 docker-compose ps # 查看容器运行状态 docker-compose down # 停掉容器
接下来看看容器状态:
# docker-compose ps Name Command State Ports --------------------------------------------------------------------------------------------------- es-0 /usr/local/bin/docker-entr ... Up (healthy) 0.0.0.0:9200->9200/tcp, 9300/tcp es-1 /usr/local/bin/docker-entr ... Up (healthy) 9200/tcp, 0.0.0.0:9201->9201/tcp, 9300/tcp es-2 /usr/local/bin/docker-entr ... Up (healthy) 9200/tcp, 0.0.0.0:9202->9202/tcp, 9300/tcp kibana /usr/local/bin/kibana-docker Up 0.0.0.0:5601->5601/tcp
通过 kibana 查看容器状态:
其他看板:
可以看到,es 集群已经顺利起来了,集群实例就演示到这里,希望对你有用。
到此这篇关于elasticsearch 组件基于单机的多实例集群的文章就介绍到这了,更多相关elasticsearch 单机多实例集群内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!