docker

关注公众号 jb51net

关闭
首页 > 网站技巧 > 服务器 > 云和虚拟化 > docker > docker使用GPU

docker中使用GPU+rocksdb的详细教程

作者:naturliche

这篇文章主要介绍了docker中使用GPU+rocksdb,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

配置环境

 dell@dell-Precision-3630-Tower  ~  lsb_release -a
No LSB modules are available.
Distributor ID:	Ubuntu
Description:	Ubuntu 20.04.6 LTS
Release:	20.04
Codename:	focal

dell@dell-Precision-3630-Tower  ~  nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:33:58_PDT_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0

 dell@dell-Precision-3630-Tower  ~  docker version
Client: Docker Engine - Community
 Version:           24.0.6
 API version:       1.43
 Go version:        go1.20.7


 OS/Arch:           linux/amd64
 Context:           default

Server: Docker Engine - Community
 Engine:
  Version:          24.0.6
  API version:      1.43 (minimum version 1.12)
  Go version:       go1.20.7

  OS/Arch:          linux/amd64
  Experimental:     false
 containerd:
  Version:          1.6.24

 runc:
  Version:          1.1.9

 docker-init:
  Version:          0.19.0


#安装方式:sudo apt-get install libcudnn8-dev=8.9.2.26-1+cuda11.8
cudnn:libcudnn8-dev=8.9.2.26-1+cuda11.8

目录结构

nvidia-docker和从docker 19开始提供的nvidia-container-toolkit的区别:

nvidia-docker 概述:

nvidia-container-toolkit

比较和推荐使用

docker安装GPU工具箱nvidia-container-toolkit

参考链接:

https://zhuanlan.zhihu.com/p/544713249

sudo apt install curl
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

docker拉取含cuda的镜像建立镜像

去Nvidia官网下载cuda版本的Docker:https://hub.docker.com/r/nvidia/cuda

images包含的三种风格:

NVIDIA Container Toolkit

The NVIDIA Container Toolkit for Docker is required to run CUDA images.

For CUDA 10.0, nvidia-docker2 (v2.1.0) or greater is recommended. It is also recommended to use Docker 19.03.

还是自己写一个镜像吧,该镜像拥有cudn,rocksdb环境

# from official ubuntu 20.04
# FROM ubuntu:20.04
# docker pull nvidia/cuda:11.8.0-devel-ubuntu20.04
FROM nvidia/cuda:11.8.0-devel-ubuntu20.04

# RUN mv /etc/apt/sources.list /etc/apt/sources_backup.list && \
# echo "deb http://mirrors.ustc.edu.cn/ubuntu/ focal main restricted " >> /etc/apt/sources.list && \
# echo "deb http://mirrors.ustc.edu.cn/ubuntu/ focal-updates main restricted " >> /etc/apt/sources.list && \
# echo "deb http://mirrors.ustc.edu.cn/ubuntu/ focal universe " >> /etc/apt/sources.list && \
# echo "deb http://mirrors.ustc.edu.cn/ubuntu/ focal-updates universe " >> /etc/apt/sources.list && \
# echo "deb http://mirrors.ustc.edu.cn/ubuntu/ focal multiverse " >> /etc/apt/sources.list && \
# echo "deb http://mirrors.ustc.edu.cn/ubuntu/ focal-updates multiverse " >> /etc/apt/sources.list && \
# echo "deb http://mirrors.ustc.edu.cn/ubuntu/ focal-backports main restricted universe multiverse " >> /etc/apt/sources.list && \
# echo "deb http://mirrors.ustc.edu.cn/ubuntu/ focal-security main restricted " >> /etc/apt/sources.list && \
# echo "deb http://mirrors.ustc.edu.cn/ubuntu/ focal-security universe " >> /etc/apt/sources.list && \
# echo "deb http://mirrors.ustc.edu.cn/ubuntu/ focal-security multiverse " >> /etc/apt/sources.list && \
# echo "deb http://archive.canonical.com/ubuntu focal partner " >> /etc/apt/sources.list
# update system
RUN ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo 'Asia/Shanghai' >/etc/timezone \ 
    && apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/3bf863cc.pub \
    && apt clean && apt update && apt install -yq --no-install-recommends sudo \
    && sudo apt install -yq --no-install-recommends python3 python3-pip libgl1-mesa-glx libglib2.0-0 libsm6 libxext6 libxrender-dev openssh-server \
    && sudo pip3 install --upgrade pip \
    && sudo pip3 config set global.index-url https://mirrors.aliyun.com/pypi/simple \
    && sudo pip3 install setuptools

RUN apt-get update && apt-get upgrade -y
# install basic tools
RUN apt-get install -y vim wget curl
# install tzdata noninteractive
RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
# install git and default compilers
RUN apt-get install -y git gcc g++ clang clang-tools
# install basic package
RUN apt-get install -y lsb-release software-properties-common gnupg
# install gflags, tbb
RUN apt-get install -y libgflags-dev libtbb-dev
# install compression libs
RUN apt-get install -y libsnappy-dev zlib1g-dev libbz2-dev liblz4-dev libzstd-dev
# install cmake
RUN apt-get install -y cmake
RUN apt-get install -y libssl-dev
# install clang-13
WORKDIR /root
RUN wget https://apt.llvm.org/llvm.sh
RUN chmod +x llvm.sh
RUN ./llvm.sh 13 all
# install gcc-7, 8, 10, 11, default is 9
RUN apt-get install -y gcc-7 g++-7
RUN apt-get install -y gcc-8 g++-8
RUN apt-get install -y gcc-10 g++-10
RUN echo "deb https://ppa.launchpadcontent.net/ubuntu-toolchain-r/test/ubuntu focal main" |tee -a /etc/apt/sources.list
RUN echo "deb-src https://ppa.launchpadcontent.net/ubuntu-toolchain-r/test/ubuntu focal main" |tee -a /etc/apt/sources.list
RUN curl -sL "http://keyserver.ubuntu.com/pks/lookup?op=get&search=0x60C317803A41BA51845E371A1E9377A2BA9EF27F" |apt-key add
#RUN apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 60C317803A41BA51845E371A1E9377A2BA9EF27F
RUN add-apt-repository -y ppa:ubuntu-toolchain-r/test
RUN apt-get update && apt-get upgrade -y
#RUN apt-get install -y gcc-11 g++-11
# install apt-get install -y valgrind
RUN apt-get install -y valgrind
# install folly depencencies
RUN apt-get install -y libgoogle-glog-dev
# install openjdk 8
RUN apt-get install -y openjdk-8-jdk
ENV JAVA_HOME /usr/lib/jvm/java-1.8.0-openjdk-amd64
# install mingw
RUN apt-get install -y mingw-w64

# install gtest-parallel package
RUN git clone --single-branch --branch master --depth 1 https://github.com/google/gtest-parallel.git ~/gtest-parallel
ENV PATH $PATH:/root/gtest-parallel

# install libprotobuf for fuzzers test
RUN apt-get install -y ninja-build binutils liblzma-dev libz-dev pkg-config autoconf libtool
#解决GnuTLS recv error
RUN apt-get update
RUN apt-get upgrade
RUN apt-get install --reinstall ca-certificates
RUN git clone --branch v1.0 https://github.com/google/libprotobuf-mutator.git ~/libprotobuf-mutator && cd ~/libprotobuf-mutator && git checkout ffd86a32874e5c08a143019aad1aaf0907294c9f && mkdir build && cd build && cmake .. -GNinja -DCMAKE_C_COMPILER=clang-13 -DCMAKE_CXX_COMPILER=clang++-13 -DCMAKE_BUILD_TYPE=Release -DLIB_PROTO_MUTATOR_DOWNLOAD_PROTOBUF=ON && ninja && ninja install
ENV PKG_CONFIG_PATH /usr/local/OFF/:/root/libprotobuf-mutator/build/external.protobuf/lib/pkgconfig/
ENV PROTOC_BIN /root/libprotobuf-mutator/build/external.protobuf/bin/protoc

#install the latest google benchmark
RUN git clone --depth 1 --branch v1.7.0 https://github.com/google/benchmark.git ~/benchmark
RUN cd ~/benchmark && mkdir build && cd build && cmake .. -GNinja -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_GTEST_TESTS=0 && ninja && ninja install

# # clean up
# RUN rm -rf /var/lib/apt/lists/*
# RUN rm -rf /root/benchmark
#以下为build-image.sh
#!/usr/bin/env bash
SHELL_HOME=$(
  cd "$(dirname "$0")" || exit
  pwd
)
source "${SHELL_HOME}/../dev.conf"

# docker build --build-arg \
#   --build-arg http_proxy= xxx\
#   --build-arg https_proxy= xxx\
#   --build-arg all_proxy=socks5 \
#   --tag "${IMAGE_NAME}:${IMAGE_VERSION}" "${SHELL_HOME}"

docker build --tag "${IMAGE_NAME}:${IMAGE_VERSION}" "${SHELL_HOME}"

运行容器

参考链接:https://blog.csdn.net/Maid_Li/article/details/124952650

在启动docker容器的时候要注意加一些cuda的参数

#!/usr/bin/env bash

#当前脚本路径
SHELL_HOME=$(
  cd "$(dirname "$0")" || exit
  pwd
)
source "${SHELL_HOME}"/../dev.conf
source "${SHELL_HOME}"/utilities/rocks.conf

CONTAINER_NAME="rocksdb-gpu"

# work dir inside the dev container
SOURCE_DIR_INSIDE="/home/baum/GPU_ROCKS"
#本地源代码目录 
SOURCE_DIR="/nvme/baum/git-project/GPU_ROCKS"
WORK_DIR=/rocks
RECREATE_CONTAINER=""

#我执行的./start.sh -s /nvme/baum/git-project/GPU_ROCKS
function show_usage() {
  echo "
  Start a gdb container for Rocksdb.

  Usage:
    ./start.sh
    ./start.sh -s /path/to/your/cockroachdb/home


  Options:
    -s                Project path of crdb, default is '${HOME}/go/src/github.com/cockroachdb'.
    -r                Recreate the dev container.
    -h                Show this message.
  "
  exit
}

while getopts "s:hr" opt; do
  case $opt in
  s)
    SOURCE_DIR=${OPTARG}
    ;;
  r)
    RECREATE_CONTAINER="true"
    ;;
  h)
    show_usage
    ;;
  *)
    show_usage
    ;;
  esac
done

CONTAINER_RUNNING=$(docker container ls | grep "${CONTAINER_NAME}")
CONTAINER_EXISTED=$(docker container ls -a | grep "${CONTAINER_NAME}")

if [[ ${RECREATE_CONTAINER} == "true" && -n ${CONTAINER_EXISTED} ]]; then
  echo "remove the existing rocksdb-gpu container ..."
  docker rm -f "${CONTAINER_NAME}"
  CONTAINER_EXISTED=""
fi

echo "current SOURCE_DIR is '${SOURCE_DIR}'"

if [[ -z ${CONTAINER_EXISTED} ]]; then
  echo "staring the rocksdb-gpu environment 1 ..."
  #-v 挂载目录,将前一个映射到后一个
  docker run -it -v "${SOURCE_DIR}":/rocks \
    -v "${SOURCE_DIR}":${SOURCE_DIR_INSIDE} \
    --name ${CONTAINER_NAME} \
    --publish "${ROCKS_PORT}"-"${GDB_PORT}":"${ROCKS_PORT}"-"${GDB_PORT}" \
    --network=rocksdb-br \
    --gpus all \
    -e NVIDIA_DRIVER_CAPABILITIES=compute,utility \
    -e NVIDIA_VISIBLE_DEVICES=all \
    --workdir ${WORK_DIR} \
    "${IMAGE_NAME}:${IMAGE_VERSION}" \
    bash
  exit
fi

if [[ -z ${CONTAINER_RUNNING} ]]; then
  echo "starting rocksdb-gpu environment 2 ..."
  docker start "${CONTAINER_NAME}"
fi

echo "logging into rocksdb-gpu environment '${CONTAINER_NAME}' ..."
docker exec -it "${CONTAINER_NAME}" bash

网络配置

本地16017-16019映射到容器16017-16019

#init-docker-network.sh
#!/usr/bin/env bash
SHELL_HOME=$(
  cd "$(dirname "$0")" || exit
  pwd
)
source "${SHELL_HOME}"/dev.conf
echo "create network bridge for rocks ..."
docker network create --subnet="${SUBNET}" "${BRIDGE_NAME}"
docker network list

参考链接:

https://github.com/cnstark/pytorch-docker/blob/main/scripts/build_2.0.1_py3.9.17_cuda11.8.0_devel_ubuntu20.04.sh

https://zhuanlan.zhihu.com/p/544713249

到此这篇关于docker中使用GPU+rocksdb的文章就介绍到这了,更多相关docker使用GPU内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文