python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python数字识别程序

基于Python实现的简单数字识别程序

作者:ufdf

文章介绍了如何使用全连接神经网络(MLP)进行MNIST数字识别,包括代码模型定义、训练和测试的步骤,并解释了模型权重保存文件的内容,需要的朋友可以参考下

这里我们使用全连接神经网络(MLP) 实现的 MNIST 数字识别代码,结构更简单,仅包含几个线性层和激活函数。

简易代码

模型定义代码,model.py

import torch.nn as nn

# 定义一个简单的 CNN 模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(28 * 28, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 10)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.2)

    def forward(self, x):
        x = self.flatten(x)  # [B, 1, 28, 28] -> [B, 784]
        x = self.relu(self.fc1(x))
        x = self.dropout(x)
        x = self.relu(self.fc2(x))
        x = self.dropout(x)
        x = self.fc3(x)  # 输出层不加激活(CrossEntropyLoss 内部含 softmax)
        return x

然后训练代码,train.py

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from model import SimpleModel  # 👈 从 model.py 导入

# 配置
batch_size = 64
learning_rate = 0.001
num_epochs = 10
model_save_path = 'mnist_mlp.pth'

# 数据
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

# 模型、损失、优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = SimpleModel().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 训练
print(f"Training on {device}...")
model.train()
for epoch in range(num_epochs):
    total_loss = 0.0
    for images, labels in train_loader:
        images, labels = images.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {total_loss/len(train_loader):.4f}')

# 保存
torch.save(model.state_dict(), model_save_path)
print(f"✅ Model saved to {model_save_path}")

训练

在训练之前我们需要安装下python依赖

pip install torch torchvision

然后我们就可以开始训练模型啦!执行命令python ./train.py,你会看到类似输出

Training on cpu...
Epoch [1/10], Loss: 0.3501
Epoch [2/10], Loss: 0.1702
Epoch [3/10], Loss: 0.1335
Epoch [4/10], Loss: 0.1141
Epoch [5/10], Loss: 0.1027
Epoch [6/10], Loss: 0.0915
Epoch [7/10], Loss: 0.0884
Epoch [8/10], Loss: 0.0801
Epoch [9/10], Loss: 0.0769
Epoch [10/10], Loss: 0.0715
✅ Model saved to mnist_mlp.pth

目录下会生成一个mnist_mlp.pthmnist_mlp.pth 是一个 PyTorch 模型权重保存文件,本质上是一个 序列化后的字典(state_dict),存储了神经网络中所有可学习参数(如权重和偏置)的数值。

测试模型

现在我们拿我们的模型去试试我们的数字图片了~
predict.py

# predict.py
import torch
import torchvision.transforms as transforms
from PIL import Image
from model import SimpleModel
import argparse
import os

def predict_image(image_path, model_path='mnist_mlp.pth', device='cpu'):
    # 1. 加载模型
    model = SimpleModel()
    model.load_state_dict(torch.load(model_path, map_location=device))
    model.eval()  # 推理模式

    # 2. 图像预处理(必须和训练时一致!)
    transform = transforms.Compose([
        transforms.Grayscale(num_output_channels=1),  # 转灰度
        transforms.Resize((28, 28)),                   # 调整为 28x28
        transforms.ToTensor(),                         # 转为 Tensor [0,1]
        transforms.Normalize((0.1307,), (0.3081,))    # 用 MNIST 的均值/标准差
    ])

    # 3. 加载并预处理图像
    image = Image.open(image_path).convert('L')  # 强制灰度(兼容 RGB 输入)
    input_tensor = transform(image)              # shape: [1, 28, 28]
    input_batch = input_tensor.unsqueeze(0)      # 增加 batch 维度 → [1, 1, 28, 28]

    # 4. 推理
    with torch.no_grad():
        output = model(input_batch)
        probabilities = torch.softmax(output, dim=1)
        predicted_class = torch.argmax(probabilities, dim=1).item()
        confidence = probabilities[0][predicted_class].item()

    return predicted_class, confidence

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Predict digit in an image using trained MLP')
    parser.add_argument('image_path', type=str, help='Path to the input image (e.g., digit.png)')
    args = parser.parse_args()

    if not os.path.exists(args.image_path):
        print(f"❌ Error: Image file '{args.image_path}' not found!")
        exit(1)

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    digit, conf = predict_image(args.image_path, device=device)

    print(f"✅ Predicted digit: {digit}")
    print(f"📊 Confidence: {conf:.4f} ({conf*100:.2f}%)")

我们可以python .\predict.py .\data\digit.png来看看预测的结果如何。

到此这篇关于基于Python实现的简单数字识别程序的文章就介绍到这了,更多相关Python数字识别程序内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文