python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python处理CSV和Excel

Python自动化办公之处理CSV和Excel文件的操作指南

作者:小庄-Python办公

面向数据分析、报表生成与系统集成的日常工作,CSV 与 Excel 几乎是最常用的两种表格数据格式,下面我们就来系统讲解如何在 Python 中高效读写 CSV 和 Excel吧

前言

面向数据分析、报表生成与系统集成的日常工作,CSV 与 Excel 几乎是最常用的两种表格数据格式。本文以实战为导向,系统讲解如何在 Python 中高效、稳健地读写 CSV 和 Excel,覆盖常见坑点与性能优化策略,并给出可直接复制使用的代码示例。

适用读者与目标

库选型与安装

安装示例:

pip install pandas openpyxl xlsxwriter

读取 CSV(标准库 csv)

import csv
from pathlib import Path

path = Path("data.csv")

with path.open("r", encoding="utf-8") as f:
    reader = csv.reader(f)
    for row in reader:
        pass

使用字典形式更便于字段访问:

import csv
from pathlib import Path

with Path("data.csv").open("r", encoding="utf-8") as f:
    reader = csv.DictReader(f)
    for record in reader:
        pass

写入 CSV(标准库 csv)

import csv
from pathlib import Path

rows = [["id", "name", "score"], [1, "张三", 95]]

with Path("out.csv").open("w", encoding="utf-8", newline="") as f:
    writer = csv.writer(f)
    for row in rows:
        writer.writerow(row)

写入带表头的字典:

import csv
from pathlib import Path

records = [
    {"id": 1, "name": "张三", "score": 95},
    {"id": 2, "name": "李四", "score": 88},
]

fieldnames = ["id", "name", "score"]

with Path("out_dict.csv").open("w", encoding="utf-8", newline="") as f:
    writer = csv.DictWriter(f, fieldnames=fieldnames)
    writer.writeheader()
    writer.writerows(records)

使用 pandas 读写 CSV

读取:

import pandas as pd

df = pd.read_csv("data.csv", encoding="utf-8")

写入:

df.to_csv("out.csv", index=False, encoding="utf-8")

逐块读取大文件:

import pandas as pd

for chunk in pd.read_csv("big.csv", chunksize=100_000):
    pass

只读部分列并指定类型:

import pandas as pd

df = pd.read_csv(
    "data.csv",
    usecols=["id", "name", "score"],
    dtype={"id": "Int64", "name": "string", "score": "float64"},
)

编码与本地化要点(Windows/Excel 友好)

示例:

import csv
from pathlib import Path

with Path("excel_friendly.csv").open("w", encoding="utf-8-sig", newline="") as f:
    writer = csv.writer(f)
    writer.writerow(["编号", "姓名", "备注"]) 

pandas 侧:

import pandas as pd

df = pd.DataFrame({"编号": [1, 2], "姓名": ["张三", "李四"]})
df.to_csv("excel_friendly.csv", index=False, encoding="utf-8-sig")

读取 Excel(.xlsx)

使用 pandas:

import pandas as pd

df = pd.read_excel("workbook.xlsx", sheet_name=0, engine="openpyxl")

指定列与类型:

import pandas as pd

df = pd.read_excel(
    "workbook.xlsx",
    sheet_name="Sheet1",
    usecols=["id", "name", "score"],
    dtype={"id": "Int64", "name": "string", "score": "float64"},
    engine="openpyxl",
)

使用 openpyxl 原生读取:

from openpyxl import load_workbook

wb = load_workbook("workbook.xlsx", read_only=True)
ws = wb.active
for row in ws.iter_rows(values_only=True):
    pass
wb.close()

写入 Excel 与多工作表

pandas 写入多个工作表:

import pandas as pd

with pd.ExcelWriter("report.xlsx", engine="xlsxwriter") as writer:
    df1 = pd.DataFrame({"id": [1, 2], "name": ["张三", "李四"]})
    df2 = pd.DataFrame({"id": [3, 4], "name": ["王五", "赵六"]})
    df1.to_excel(writer, sheet_name="用户A", index=False)
    df2.to_excel(writer, sheet_name="用户B", index=False)

openpyxl 创建并写入:

from openpyxl import Workbook

wb = Workbook()
ws = wb.active
ws.title = "数据"
ws.append(["id", "name", "score"])
ws.append([1, "张三", 95])
wb.save("simple.xlsx")

样式、公式与格式(Excel)

使用 xlsxwriter 设置样式:

import pandas as pd

with pd.ExcelWriter("styled.xlsx", engine="xlsxwriter") as writer:
    df = pd.DataFrame({"金额": [1234.5, 6789.01]})
    df.to_excel(writer, sheet_name="Sheet1", index=False)
    workbook  = writer.book
    worksheet = writer.sheets["Sheet1"]
    fmt = workbook.add_format({"num_format": "#,##0.00", "bold": True})
    worksheet.set_column("A:A", 12, fmt)

插入公式(openpyxl):

from openpyxl import Workbook
from openpyxl.utils import get_column_letter

wb = Workbook()
ws = wb.active
ws.append(["单价", "数量", "总价"])
ws.append([10, 2, None])
ws["C2"] = "=A2*B2"
wb.save("formula.xlsx")

类型、缺失值与前导零

示例:

import pandas as pd

df = pd.read_csv(
    "ids.csv",
    dtype={"bill_no": "string", "phone": "string"},
    keep_default_na=False,
)

CSV ↔ Excel 转换

CSV 转 Excel:

import pandas as pd

df = pd.read_csv("data.csv")
df.to_excel("data.xlsx", index=False)

Excel 转 CSV:

import pandas as pd

df = pd.read_excel("data.xlsx", engine="openpyxl")
df.to_csv("data.csv", index=False, encoding="utf-8")

多工作表合并读取:

import pandas as pd

xls = pd.ExcelFile("book.xlsx", engine="openpyxl")
frames = [xls.parse(name) for name in xls.sheet_names]
merged = pd.concat(frames, ignore_index=True)

大文件与性能优化

示例:

import pandas as pd

for chunk in pd.read_csv("big.csv", chunksize=200_000):
    pass

openpyxl 写入大文件:

from openpyxl import Workbook

wb = Workbook(write_only=True)
ws = wb.create_sheet("数据")
for i in range(1_000_000):
    ws.append([i, f"name_{i}"])
wb.save("big.xlsx")

常见坑点与规避

迷你速查

结语

掌握 CSV 与 Excel 的读写不仅是数据工程的基本功,更是提升系统集成与数据流转效率的关键。将本文的示例与策略纳入你的项目骨架,可以显著降低编码与格式问题带来的不确定性,并在大数据量场景下获得稳定的性能表现。

到此这篇关于Python自动化办公之处理CSV和Excel文件的操作指南的文章就介绍到这了,更多相关Python处理CSV和Excel内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文