python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python数据库风险识别

使用Python实现数据库的风险识别

作者:mosquito_lover1

数据库风险发现系统旨在识别和缓解数据库中的潜在风险,如SQL注入,未授权访问等,下面小编就来为大家详细介绍一下如何使用Python实现数据库的风险识别吧

1. 系统概述

数据库风险发现系统旨在识别和缓解数据库中的潜在风险,如SQL注入、未授权访问、数据泄露等。系统通过自动化工具实时监控数据库活动,分析日志,识别异常行为,并提供修复建议。

2. 系统架构

系统由以下模块组成:

3. 关键技术

1.数据采集技术:

2.数据分析技术:

3.风险评估技术:

4.报警与响应技术:

5.报告与可视化技术:

4. 系统实现

开发语言与工具:

数据库支持:

以下是一个简化版的Python实现,涵盖数据采集、规则引擎、风险评估、报警和可视化等核心功能。这个示例代码仅用于演示目的,实际生产环境需要更复杂的实现和优化。

import logging
import time
from datetime import datetime
from collections import defaultdict
import pandas as pd
import matplotlib.pyplot as plt
 
# 配置日志
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
 
# 模拟数据库日志
class DatabaseLogger:
    def __init__(self):
        self.logs = []
 
    def log_query(self, user, query, timestamp=None):
        if not timestamp:
            timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        log_entry = {"user": user, "query": query, "timestamp": timestamp}
        self.logs.append(log_entry)
        logging.info(f"Logged query: {log_entry}")
 
    def get_logs(self):
        return self.logs
 
# 规则引擎
class RuleEngine:
    def __init__(self):
        self.rules = [
            {"name": "SQL Injection", "pattern": ["' OR '1'='1", ";--", "UNION SELECT"]},
            {"name": "Sensitive Data Access", "pattern": ["SELECT * FROM users", "SELECT * FROM credit_cards"]},
            {"name": "Brute Force", "threshold": 5}  # 5 queries within 10 seconds
        ]
 
    def analyze_logs(self, logs):
        risks = []
        user_query_count = defaultdict(int)
 
        for log in logs:
            user = log["user"]
            query = log["query"]
            timestamp = log["timestamp"]
 
            # 规则1: SQL注入检测
            for rule in self.rules:
                if "pattern" in rule:
                    for pattern in rule["pattern"]:
                        if pattern in query:
                            risks.append({
                                "user": user,
                                "query": query,
                                "timestamp": timestamp,
                                "risk": rule["name"],
                                "severity": "High"
                            })

            # 规则2: 破解检测
            if "threshold" in rule:
                user_query_count[user] += 1
                if user_query_count[user] > rule["threshold"]:
                    risks.append({
                        "user": user,
                        "query": query,
                        "timestamp": timestamp,
                        "risk": rule["name"],
                        "severity": "Medium"
                    })
 
        return risks
 
# 风险评估
class RiskAssessor:
    @staticmethod
    def assess_risks(risks):
        risk_summary = defaultdict(int)
        for risk in risks:
            risk_summary[risk["risk"]] += 1
        return risk_summary
 
# 报警系统
class AlertSystem:
    @staticmethod
    def send_alert(risk):
        logging.warning(f"ALERT: Risk detected - {risk}")
 
# 可视化模块
class Visualizer:
    @staticmethod
    def plot_risks(risk_summary):
        risks = list(risk_summary.keys())
        counts = list(risk_summary.values())
 
        plt.bar(risks, counts, color='red')
        plt.xlabel('Risk Type')
        plt.ylabel('Count')
        plt.title('Database Risk Summary')
        plt.show()
 
# 主系统
class DatabaseRiskDiscoverySystem:
    def __init__(self):
        self.logger = DatabaseLogger()
        self.rule_engine = RuleEngine()
        self.risk_assessor = RiskAssessor()
        self.alert_system = AlertSystem()
        self.visualizer = Visualizer()
 
    def run(self):
        # 模拟日志数据
        self.logger.log_query("admin", "SELECT * FROM users WHERE id = 1")
        self.logger.log_query("hacker", "SELECT * FROM users WHERE id = 1 OR '1'='1'")
        self.logger.log_query("hacker", "SELECT * FROM credit_cards")
        self.logger.log_query("hacker", "SELECT * FROM users;--")
        self.logger.log_query("hacker", "SELECT * FROM users")
        self.logger.log_query("hacker", "SELECT * FROM users")
        self.logger.log_query("hacker", "SELECT * FROM users")
        self.logger.log_query("hacker", "SELECT * FROM users")
 
        # 获取日志并分析风险
        logs = self.logger.get_logs()
        risks = self.rule_engine.analyze_logs(logs)
 
        # 评估风险
        risk_summary = self.risk_assessor.assess_risks(risks)
 
        # 发送报警
        for risk in risks:
            self.alert_system.send_alert(risk)
 
        # 可视化风险
        self.visualizer.plot_risks(risk_summary)
 
# 运行系统
if __name__ == "__main__":
    system = DatabaseRiskDiscoverySystem()
    system.run()

5.代码说明

1.DatabaseLogger:

模拟数据库日志记录,记录用户查询操作。

2.RuleEngine:

使用规则引擎检测SQL注入、敏感数据访问等风险。

3.RiskAssessor:

对检测到的风险进行汇总和评估。

4.AlertSystem:

发送风险报警。

5.Visualizer:

使用Matplotlib绘制风险统计图。

6.DatabaseRiskDiscoverySystem:

主系统,整合所有模块并运行。

到此这篇关于使用Python实现数据库的风险识别的文章就介绍到这了,更多相关Python数据库风险识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文