Python操作Excel文件的11种方法(全网最全)
作者:极客代码
在日常工作或开发过程中,Excel文件作为一种常用的数据存储格式,其高效便捷的数据处理能力被广泛应用于数据统计、数据分析等领域,Python作为一种强大的编程语言,提供了丰富的库支持来实现对Excel文件的操作,本篇将详细介绍如何使用Python来操作Excel文件
引言
Python 提供了多种库和方法来操作 Excel 文件,每种方法都有其独特的优势和适用场景。本文将详细介绍这 11 种方法,包括它们的优缺点、适用场景以及详细的使用方式和代码示例,帮助读者全面掌握这些工具。本文不仅涵盖了基本的读写操作,还将深入探讨高级功能和最佳实践。
1. 使用 pandas 库
优点:
- 功能强大,支持数据清洗、转换和分析。
- 支持多种文件格式,包括
.xls和.xlsx。 - 提供丰富的数据操作方法,如筛选、排序、分组等。
缺点:
- 学习曲线较高,需要一定的编程基础。
- 处理大规模数据时可能占用较多内存。
适用场景:
- 数据分析和处理任务。
- 需要进行复杂数据操作和分析的场景。
详细使用方式:
- 安装
pandas:
pip install pandas
- 读取 Excel 文件:
import pandas as pd
# 读取 Excel 文件
df = pd.read_excel('example.xlsx')
print(df.head()) # 显示前五行数据
# 读取特定工作表
df = pd.read_excel('example.xlsx', sheet_name='Sheet1')
print(df.head())
- 写入 Excel 文件:
import pandas as pd
# 创建数据
data = {
'Name': ['Tom', 'Jerry'],
'Age': [20, 21]
}
df = pd.DataFrame(data)
# 写入 Excel 文件
df.to_excel('output.xlsx', index=False)
数据操作:
- 选择特定列:
df = pd.read_excel('example.xlsx', usecols=['Name', 'Age'])
print(df.head())
- 过滤数据:
df = pd.read_excel('example.xlsx')
filtered_df = df[df['Age'] > 20]
print(filtered_df)
- 数据分组:
df = pd.read_excel('example.xlsx')
grouped_df = df.groupby('Age').mean()
print(grouped_df)
- 添加新列:
df = pd.read_excel('example.xlsx')
df['NewColumn'] = df['Age'] * 2
print(df)
- 更新单元格:
df = pd.read_excel('example.xlsx')
df.at[0, 'Age'] = 25
print(df)
- 删除列:
df = pd.read_excel('example.xlsx')
del df['Age']
print(df)
- 合并多个 Excel 文件:
df1 = pd.read_excel('file1.xlsx')
df2 = pd.read_excel('file2.xlsx')
merged_df = pd.concat([df1, df2], ignore_index=True)
print(merged_df)
- 数据透 视表:
df = pd.read_excel('example.xlsx')
pivot_table = pd.pivot_table(df, values='Age', index=['Name'], aggfunc='sum')
print(pivot_table)
2. 使用 openpyxl 库
优点:
- 专注于
.xlsx文件格式。 - 提供细粒度的操作,如单元格格式、图表等。
- 支持读取、写入和修改 Excel 文件。
缺点:
- 不支持
.xls文件格式。 - 功能相对单一,不适用于复杂的数据分析任务。
适用场景:
- 需要对 Excel 文件进行细粒度操作的场景。
- 处理
.xlsx文件格式的任务。
详细使用方式:
- 安装
openpyxl:
pip install openpyxl
- 读取 Excel 文件:
from openpyxl import load_workbook
# 加载 Excel 文件
wb = load_workbook('example.xlsx')
sheet = wb.active
# 读取数据
for row in sheet.iter_rows(values_only=True):
print(row)
- 写入 Excel 文件:
from openpyxl import Workbook
# 创建新的工作簿
wb = Workbook()
sheet = wb.active
# 写入数据
sheet.append(['Name', 'Age'])
sheet.append(['Tom', 20])
sheet.append(['Jerry', 21])
# 保存文件
wb.save('output.xlsx')
- 修改 Excel 文件:
from openpyxl import load_workbook
# 加载 Excel 文件
wb = load_workbook('example.xlsx')
sheet = wb.active
# 修改单元格数据
sheet['A1'] = 'New Name'
sheet['B1'] = 25
# 保存修改后的 Excel 文件
wb.save('modified_example.xlsx')
- 设置单元格格式:
from openpyxl import Workbook
from openpyxl.styles import Font, Alignment
# 创建新的工作簿
wb = Workbook()
sheet = wb.active
# 设置单元格格式
cell = sheet['A1']
cell.value = 'Hello, World!'
cell.font = Font(bold=True, color='FF0000')
cell.alignment = Alignment(horizontal='center', vertical='center')
# 保存文件
wb.save('formatted_output.xlsx')
3. 使用 xlrd 和 xlwt 库
优点:
- 支持
.xls文件格式。 xlrd用于读取 Excel 文件,xlwt用于写入 Excel 文件。- 轻量级,适合简单的数据操作任务。
缺点:
- 不支持
.xlsx文件格式。 - 功能相对有限,不适合复杂的操作。
适用场景:
- 处理
.xls文件格式的任务。 - 需要简单数据操作的场景。
详细使用方式:
- 安装
xlrd和xlwt:
pip install xlrd xlwt
- 读取 Excel 文件:
import xlrd
# 打开 Excel 文件
workbook = xlrd.open_workbook('example.xls')
sheet = workbook.sheet_by_index(0)
# 读取数据
for row_idx in range(sheet.nrows):
row = sheet.row_values(row_idx)
print(row)
- 写入 Excel 文件:
import xlwt
# 创建新的工作簿
workbook = xlwt.Workbook()
sheet = workbook.add_sheet('Sheet1')
# 写入数据
sheet.write(0, 0, 'Name')
sheet.write(0, 1, 'Age')
sheet.write(1, 0, 'Tom')
sheet.write(1, 1, 20)
sheet.write(2, 0, 'Jerry')
sheet.write(2, 1, 21)
# 保存文件
workbook.save('output.xls')
4. 使用 xlwings 库
优点:
- 支持
.xls和.xlsx文件格式。 - 可以读写 Excel 文件,并进行单元格格式的修改。
- 提供与 Excel 应用程序交互的功能。
缺点:
- 需要安装 Excel 应用程序。
- 功能相对复杂,学习曲线较高。
适用场景:
- 需要与 Excel 应用程序交互的场景。
- 处理复杂数据操作和格式设置的任务。
详细使用方式:
- 安装
xlwings:
pip install xlwings
- 读取 Excel 文件:
import xlwings as xw
# 创建 Excel 应用程序对象
app = xw.App(visible=True, add_book=False)
# 打开工作簿
wb = app.books.open('example.xlsx')
sheet = wb.sheets[0]
# 读取数据
data = sheet.range('A1:B7').value
print(data)
# 关闭工作簿和应用程序
wb.close()
app.quit()
- 写入 Excel 文件:
import xlwings as xw
# 创建 Excel 应用程序对象
app = xw.App(visible=True, add_book=False)
# 创建新的工作簿
wb = app.books.add()
sheet = wb.sheets[0]
# 写入数据
sheet.range('A1').value = [['Name', 'Age'], ['Tom', 20], ['Jerry', 21]]
# 保存文件
wb.save('output.xlsx')
# 关闭工作簿和应用程序
wb.close()
app.quit()
- 设置单元格格式:
import xlwings as xw
# 创建 Excel 应用程序对象
app = xw.App(visible=True, add_book=False)
# 创建新的工作簿
wb = app.books.add()
sheet = wb.sheets[0]
# 写入数据
sheet.range('A1').value = [['Name', 'Age'], ['Tom', 20], ['Jerry', 21]]
# 设置单元格格式
cell = sheet.range('A1')
cell.api.Font.Bold = True
cell.api.HorizontalAlignment = -4108 # 水平居中
cell.api.VerticalAlignment = -4108 # 垂直居中
# 保存文件
wb.save('formatted_output.xlsx')
# 关闭工作簿和应用程序
wb.close()
app.quit()
5. 使用 XlsxWriter 库
优点:
- 专注于写入
.xlsx文件。 - 支持文本、数字、公式等的写入。
- 提供丰富的单元格格式设置功能。
缺点:
- 不支持读取 Excel 文件。
- 功能相对单一,不适用于复杂的数据操作任务。
适用场景:
- 需要写入
.xlsx文件的任务。 - 需要精细格式设置的场景。
详细使用方式:
- 安装
XlsxWriter:
pip install XlsxWriter
- 写入 Excel 文件:
import xlsxwriter
# 创建新的 Excel 文件
workbook = xlsxwriter.Workbook('output.xlsx')
worksheet = workbook.add_worksheet()
# 写入数据
data = [['Name', 'Age'], ['Tom', 20], ['Jerry', 21]]
for row_num, row_data in enumerate(data):
worksheet.write_row(row_num, 0, row_data)
# 设置单元格格式
bold = workbook.add_format({'bold': True})
worksheet.write('A1', 'Name', bold)
worksheet.write('B1', 'Age', bold)
# 插入图表
chart = workbook.add_chart({'type': 'column'})
chart.add_series({
'categories': '=Sheet1!$A$2:$A$3',
'values': '=Sheet1!$B$2:$B$3',
})
worksheet.insert_chart('D2', chart)
# 保存文件
workbook.close()
6. 使用 pyexcel 库
优点:
- 支持多种 Excel 文件格式,包括
.xls和.xlsx。 - 提供一致的接口来读取和写入这些文件。
- 轻量级,易于使用。
缺点:
- 功能相对有限,不适用于复杂的操作。
- 不如
pandas和openpyxl功能丰富。
适用场景:
- 处理多种 Excel 文件格式的任务。
- 需要简单数据操作的场景。
详细使用方式:
- 安装
pyexcel:
pip install pyexcel pyexcel-xls pyexcel-xlsx
- 读取 Excel 文件:
import pyexcel # 读取 Excel 文件 sheet = pyexcel.get_sheet(file_name="example.xlsx") print(sheet) # 读取特定工作表 sheet = pyexcel.get_sheet(file_name="example.xlsx", sheet_name="Sheet1") print(sheet)
- 写入 Excel 文件:
import pyexcel
# 创建数据
data = [['Name', 'Age'], ['Tom', 20], ['Jerry', 21]]
# 写入 Excel 文件
sheet = pyexcel.Sheet(data)
sheet.save_as("output.xlsx")
7. 使用 et_xmlfile 库
优点:
- 用于处理 Excel 文件的 XML 内容。
- 适用于高级用户,可以直接操作 Excel 文件的内部结构。
缺点:
- 学习曲线较高,需要了解 XML 结构。
- 功能相对复杂,不适合初学者。
适用场景:
- 需要直接操作 Excel 文件内部结构的场景。
- 处理复杂 Excel 文件的任务。
详细使用方式:
- 安装
et_xmlfile:
pip install et_xmlfile
- 读取 Excel 文件的 XML 内容:
from et_xmlfile import xmlfile
# 读取 Excel 文件的 XML 内容
with xmlfile.XmlFile('example.xlsx') as xf:
for event, elem in xf.iterparse():
print(event, elem.tag)
8. 使用 win32com.client 库
优点:
- 通过 COM 接口操作 Excel 文件。
- 支持多种 Excel 文件格式。
- 提供与 Excel 应用程序交互的功能。
缺点:
- 需要安装 Excel 应用程序。
- 功能相对复杂,学习曲线较高。
- 仅适用于 Windows 环境。
适用场景:
- 需要与 Excel 应用程序交互的场景。
- 处理复杂数据操作和格式设置的任务。
详细使用方式:
- 安装
pywin32:
pip install pywin32
- 读取 Excel 文件:
import win32com.client
# 创建 Excel 应用程序对象
excel = win32com.client.Dispatch("Excel.Application")
excel.Visible = True
# 打开工作簿
workbook = excel.Workbooks.Open(r'C:\path\to\example.xlsx')
sheet = workbook.Sheets(1)
# 读取数据
cell_value = sheet.Cells(1, 1).Value
print(cell_value)
# 关闭工作簿和应用程序
workbook.Close()
excel.Quit()
- 写入 Excel 文件:
import win32com.client
# 创建 Excel 应用程序对象
excel = win32com.client.Dispatch("Excel.Application")
excel.Visible = True
# 创建新的工作簿
workbook = excel.Workbooks.Add()
sheet = workbook.Sheets(1)
# 写入数据
sheet.Cells(1, 1).Value = 'Name'
sheet.Cells(1, 2).Value = 'Age'
sheet.Cells(2, 1).Value = 'Tom'
sheet.Cells(2, 2).Value = 20
sheet.Cells(3, 1).Value = 'Jerry'
sheet.Cells(3, 2).Value = 21
# 保存文件
workbook.SaveAs(r'C:\path\to\output.xlsx')
# 关闭工作簿和应用程序
workbook.Close()
excel.Quit()
9. 使用 tablib 库
优点:
- 支持多种数据格式,包括 Excel。
- 提供一致的接口来处理不同格式的数据。
- 轻量级,易于使用。
缺点:
- 功能相对有限,不适用于复杂的操作。
- 不如
pandas和openpyxl功能丰富。
适用场景:
- 处理多种数据格式的任务。
- 需要简单数据操作的场景。
详细使用方式:
- 安装
tablib:
pip install tablib
- 写入 Excel 文件:
import tablib
# 创建数据集
data = tablib.Dataset()
data.headers = ['Name', 'Age']
data.append(['Tom', 20])
data.append(['Jerry', 21])
# 导出为 Excel 文件
with open('output.xlsx', 'wb') as f:
f.write(data.export('xlsx'))
10. 使用 odfpy 库
优点:
- 用于处理 OpenDocument 格式文件,包括
.ods文件。 - 提供读取和写入
.ods文件的功能。 - 轻量级,易于使用。
缺点:
- 不支持
.xls和.xlsx文件格式。 - 功能相对有限,不适用于复杂的操作。
适用场景:
- 处理
.ods文件格式的任务。 - 需要简单数据操作的场景。
详细使用方式:
- 安装
odfpy:
pip install odfpy
- 读取 ODS 文件:
from odf.opendocument import load
from odf.table import TableRow, TableCell
from odf.text import P
# 读取 ODS 文件
doc = load('example.ods')
table = doc.spreadsheet.getElementsByType(Table)[0]
# 遍历表格中的数据
for row in table.getElementsByType(TableRow):
cells = row.getElementsByType(TableCell)
row_data = [cell.getElementsByType(P)[0].text for cell in cells]
print(row_data)
- 写入 ODS 文件:
from odf.opendocument import OpenDocumentSpreadsheet
from odf.table import Table, TableRow, TableCell
from odf.text import P
# 创建新的 ODS 文件
doc = OpenDocumentSpreadsheet()
table = Table(name="Sheet1")
doc.spreadsheet.addElement(table)
# 添加新行
new_row = TableRow()
new_row.addElement(TableCell(text=P(text='Name')))
new_row.addElement(TableCell(text=P(text='Age')))
table.addElement(new_row)
# 添加更多行
new_row = TableRow()
new_row.addElement(TableCell(text=P(text='Tom')))
new_row.addElement(TableCell(text=P(text='20')))
table.addElement(new_row)
new_row = TableRow()
new_row.addElement(TableCell(text=P(text='Jerry')))
new_row.addElement(TableCell(text=P(text='21')))
table.addElement(new_row)
# 保存文件
doc.save('output.ods')
11. 使用 pyexcel-ods3 库
优点:
- 支持
.ods文件格式。 - 提供一致的接口来读取和写入
.ods文件。 - 轻量级,易于使用。
缺点:
- 不支持
.xls和.xlsx文件格式。 - 功能相对有限,不适用于复杂的操作。
适用场景:
- 处理
.ods文件格式的任务。 - 需要简单数据操作的场景。
详细使用方式:
- 安装
pyexcel-ods3:
pip install pyexcel-ods3
- 读取 ODS 文件:
import pyexcel_ods3
# 读取 ODS 文件
data = pyexcel_ods3.get_data('example.ods')
print(data)
- 写入 ODS 文件:
import pyexcel_ods3
# 创建数据
data = {
'Sheet1': [
['Name', 'Age'],
['Tom', 20],
['Jerry', 21]
]
}
# 写入 ODS 文件
pyexcel_ods3.save_data('output.ods', data)
总结
Python 提供了多种库和方法来操作 Excel 文件,每种方法都有其独特的优缺点和适用场景。选择合适的库可以提高开发效率和代码质量。以下是每种方法的简要总结:
pandas:功能强大,支持数据清洗、转换和分析,适用于数据分析和处理任务。openpyxl:专注于.xlsx文件格式,提供细粒度的操作,适用于需要对 Excel 文件进行细粒度操作的场景。xlrd和xlwt:支持.xls文件格式,轻量级,适用于处理.xls文件格式的任务。xlwings:支持.xls和.xlsx文件格式,提供与 Excel 应用程序交互的功能,适用于需要与 Excel 应用程序交互的场景。XlsxWriter:专注于写入.xlsx文件,提供丰富的单元格格式设置功能,适用于需要写入.xlsx文件的任务。pyexcel:支持多种 Excel 文件格式,提供一致的接口,适用于处理多种 Excel 文件格式的任务。et_xmlfile:用于处理 Excel 文件的 XML 内容,适用于需要直接操作 Excel 文件内部结构的场景。win32com.client:通过 COM 接口操作 Excel 文件,适用于需要与 Excel 应用程序交互的场景。tablib:支持多种数据格式,提供一致的接口,适用于处理多种数据格式的任务。odfpy:用于处理 OpenDocument 格式文件,包括.ods文件,适用于处理.ods文件格式的任务。pyexcel-ods3:支持.ods文件格式,提供一致的接口,适用于处理.ods文件格式的任务。
希望本文能帮助你全面掌握 Python 操作 Excel 文件的各种方法。
以上就是Python操作Excel文件的11种方法(全网最全)的详细内容,更多关于Python操作Excel文件的资料请关注脚本之家其它相关文章!
