python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Pandas和Polars的区别

解读Pandas和Polars的区别及说明

作者:T-I-M

Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据处理,支持大规模数据和高性能计算

Pandas vs Polars 对比表

特性PandasPolars
开发语言Python(Cython 实现核心部分)Rust(高性能系统编程语言)
性能较慢,尤其在大数据集上(内存占用高,计算效率低)极快,利用多线程和矢量化操作,适合处理大规模数据
内存管理内存占用较高,容易出现内存瓶颈内存优化更好,支持零拷贝(zero-copy)技术,减少内存消耗
多线程支持单线程为主,部分操作支持多线程(如 groupby),但性能提升有限原生支持多线程,充分利用多核 CPU
易用性API 简单直观,生态丰富,文档完善,社区活跃API 类似 Pandas,学习曲线较低,但生态系统尚不成熟
功能丰富度功能全面,支持复杂的数据操作、时间序列分析、统计建模等功能相对较少,专注于高效数据处理,部分高级功能仍在开发中
扩展性支持与 NumPy、SciPy、Scikit-learn 等无缝集成支持与 Arrow、NumPy 等集成,但与 SciPy 等工具的兼容性较差
懒加载(Lazy Evaluation)不支持懒加载,所有操作立即执行支持懒加载,延迟计算直到需要结果时才执行,提高性能
适用数据规模适用于中小规模数据(通常小于 1GB)适用于中大规模数据(支持 GB 到 TB 级别)
安装与依赖安装简单,pip install pandas 即可安装稍复杂,需编译 Rust 库,可能需要额外配置
社区与支持社区庞大,问题解决资源丰富,插件生态成熟社区较小,但仍快速增长,文档和教程逐渐完善

使用场景对比

Pandas 的使用场景

中小规模数据处理

复杂数据操作

与其他 Python 工具链集成

教学与入门

Polars 的使用场景

大规模数据处理

高性能需求

懒加载与优化查询

内存敏感场景

跨平台数据交换

总结

选择 Pandas

选择 Polars

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文