python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python OpenCV 人脸检测

使用 Python 和 OpenCV 实现摄像头人脸检测并截图功能

作者:燕鹏01

在现代应用中,人脸检测是一项非常重要的技术,广泛应用于安全监控、身份验证等领域,本文详细介绍了如何使用 Python 和 OpenCV 库实现摄像头人脸检测并截图,并通过具体的代码示例展示了整个过程,感兴趣的朋友一起看看吧

概述

在现代应用中,人脸检测是一项非常重要的技术,广泛应用于安全监控、身份验证等领域。本文将详细介绍如何使用 Python 和 OpenCV 库实现摄像头人脸检测并截图,并通过具体的代码示例来展示整个过程。

环境准备

在开始编写代码之前,确保已经安装了 OpenCV 库。可以使用以下命令安装:

pip install opencv-python

代码详解

# -*- coding: utf-8 -*-
# import 进openCV的库
import cv2
import os
import time
# 调用摄像头检测人脸并截图
def camera(window_name, path_name):
    # Linux 不显示图形界面
    cv2.namedWindow(window_name)
    # 视频来源,来自USB摄像头
    cap = cv2.VideoCapture(0)
    # 告诉OpenCV使用人脸识别分类器
    classfier = cv2.CascadeClassifier(os.getcwd()+"/haarcascade_frontalface_alt.xml")
    # 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组
    color = (0, 255, 0)
    num = 0
    while cap.isOpened():
        ok, frame = cap.read()  # 读取一帧数据
        if not ok:
            break
        # 将当前桢图像转换成灰度图像
        grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        # 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
        faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
        if len(faceRects) > 0:  # 大于0则检测到人脸
            for faceRect in faceRects:  # 单独框出每一张人脸
                x, y, w, h = faceRect
                num = num + 1
                # 将当前帧保存为图片
                img_name = "%s/%d.jpg" % (path_name, num)
                image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
                cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
                # 延迟 60s,不要太频繁的发送,知道来了就可以了
                # time.sleep(60)
                # 画出矩形框
                cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)
                # 显示当前捕捉到了多少人脸图片了
                font = cv2.FONT_HERSHEY_SIMPLEX
                cv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)
        # 显示图像 Linux 下注释掉即可
        cv2.imshow(window_name, frame)
        c = cv2.waitKey(10)
        if c & 0xFF == ord('q'):
            break
    # 释放摄像头并销毁所有窗口
    cap.release()
    cv2.destroyAllWindows()
if __name__ == '__main__':
    camera("watchdog", os.getcwd()+"/face")

代码解析

1. 导入必要的模块

# -*- coding: utf-8 -*-
# import 进openCV的库
import cv2
import os
import time

2. 定义 camera 函数

def camera(window_name, path_name):

3. 创建窗口

    # Linux 不显示图形界面
    cv2.namedWindow(window_name)

4. 打开摄像头

    # 视频来源,来自USB摄像头
    cap = cv2.VideoCapture(0)

5. 加载人脸识别分类器

    # 告诉OpenCV使用人脸识别分类器
    classfier = cv2.CascadeClassifier(os.getcwd()+"/haarcascade_frontalface_alt.xml")

6. 设置边框颜色

    # 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组
    color = (0, 255, 0)

7. 主循环

    num = 0
    while cap.isOpened():
        ok, frame = cap.read()  # 读取一帧数据
        if not ok:
            break
        # 将当前桢图像转换成灰度图像
        grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        # 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
        faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
        if len(faceRects) > 0:  # 大于0则检测到人脸
            for faceRect in faceRects:  # 单独框出每一张人脸
                x, y, w, h = faceRect
                num = num + 1
                # 将当前帧保存为图片
                img_name = "%s/%d.jpg" % (path_name, num)
                image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
                cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
                # 延迟 60s,不要太频繁的发送,知道来了就可以了
                # time.sleep(60)
                # 画出矩形框
                cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)
                # 显示当前捕捉到了多少人脸图片了
                font = cv2.FONT_HERSHEY_SIMPLEX
                cv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)
        # 显示图像 Linux 下注释掉即可
        cv2.imshow(window_name, frame)
        c = cv2.waitKey(10)
        if c & 0xFF == ord('q'):
            break

8. 释放资源

    # 释放摄像头并销毁所有窗口
    cap.release()
    cv2.destroyAllWindows()

9. 主程序入口

if __name__ == '__main__':
    camera("watchdog", os.getcwd()+"/face")

完整代码

# -*- coding: utf-8 -*-
# import 进openCV的库
import cv2
import os
import time
# 调用摄像头检测人脸并截图
def camera(window_name, path_name):
    # Linux 不显示图形界面
    cv2.namedWindow(window_name)
    # 视频来源,来自USB摄像头
    cap = cv2.VideoCapture(0)
    # 告诉OpenCV使用人脸识别分类器
    classfier = cv2.CascadeClassifier(os.getcwd()+"/haarcascade_frontalface_alt.xml")
    # 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组
    color = (0, 255, 0)
    num = 0
    while cap.isOpened():
        ok, frame = cap.read()  # 读取一帧数据
        if not ok:
            break
        # 将当前桢图像转换成灰度图像
        grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        # 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
        faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
        if len(faceRects) > 0:  # 大于0则检测到人脸
            for faceRect in faceRects:  # 单独框出每一张人脸
                x, y, w, h = faceRect
                num = num+1
                # 将当前帧保存为图片
                img_name = "%s/%d.jpg" % (path_name, num)
                image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
                cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
                # 延迟 60s,不要太频繁的发送,知道来了就可以了
                # time.sleep(60)
                # 画出矩形框
                cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)
                # 显示当前捕捉到了多少人脸图片了
                font = cv2.FONT_HERSHEY_SIMPLEX
                cv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)
        # 显示图像 Linux 下注释掉即可
        cv2.imshow(window_name, frame)
        c = cv2.waitKey(10)
        if c & 0xFF == ord('q'):
            break
    # 释放摄像头并销毁所有窗口
    cap.release()
    cv2.destroyAllWindows()
if __name__ == '__main__':
    camera("watchdog", os.getcwd()+"/face")

测试

python3 face_detection.py

总结

本文详细介绍了如何使用 Python 和 OpenCV 库实现摄像头人脸检测并截图,并通过具体的代码示例展示了整个过程。通过使用 cv2.VideoCapture 打开摄像头,cv2.CascadeClassifier 加载预训练的 Haar 级联分类器,cv2.cvtColor 转换图像颜色空间,cv2.rectangle 绘制矩形,cv2.imwrite 保存图像,最终实现了在实时视频流中检测并保存人脸图像的功能。

到此这篇关于使用 Python 和 OpenCV 实现摄像头人脸检测并截图的文章就介绍到这了,更多相关Python OpenCV 人脸检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文