Python脚本实现datax全量同步mysql到hive
作者:大数据编程之光
前言
在我们构建离线数仓时或者迁移数据时,通常选用sqoop和datax等工具进行操作,sqoop和datax各有优点,datax优点也很明显,基于内存,所以速度上很快,那么在进行全量同步时编写json文件是一项很繁琐的事,是否可以编写脚本来把繁琐事来简单化,接下来我将分享这样一个mysql全量同步到hive自动生成json文件的python脚本。
一、展示脚本
# coding=utf-8 import json import getopt import os import sys import pymysql # MySQL 相关配置,需根据实际情况作出修改 mysql_host = "XXXXXX" mysql_port = "XXXX" mysql_user = "XXX" mysql_passwd = "XXXXXX" # HDFS NameNode 相关配置,需根据实际情况作出修改 hdfs_nn_host = "XXXXXX" hdfs_nn_port = "XXXX" # 生成配置文件的目标路径,可根据实际情况作出修改 output_path = "/XXX/XXX/XXX" def get_connection(): return pymysql.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, password=mysql_passwd) def get_mysql_meta(database, table): connection = get_connection() cursor = connection.cursor() sql = "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION" cursor.execute(sql, [database, table]) fetchall = cursor.fetchall() cursor.close() connection.close() return fetchall def get_mysql_columns(database, table): return list(map(lambda x: x[0], get_mysql_meta(database, table))) def get_hive_columns(database, table): def type_mapping(mysql_type): mappings = { "bigint": "bigint", "int": "bigint", "smallint": "bigint", "tinyint": "bigint", "decimal": "string", "double": "double", "float": "float", "binary": "string", "char": "string", "varchar": "string", "datetime": "string", "time": "string", "timestamp": "string", "date": "string", "text": "string" } return mappings[mysql_type] meta = get_mysql_meta(database, table) return list(map(lambda x: {"name": x[0], "type": type_mapping(x[1].lower())}, meta)) def generate_json(source_database, source_table): job = { "job": { "setting": { "speed": { "channel": 3 }, "errorLimit": { "record": 0, "percentage": 0.02 } }, "content": [{ "reader": { "name": "mysqlreader", "parameter": { "username": mysql_user, "password": mysql_passwd, "column": get_mysql_columns(source_database, source_table), "splitPk": "", "connection": [{ "table": [source_table], "jdbcUrl": ["jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + source_database] }] } }, "writer": { "name": "hdfswriter", "parameter": { "defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port, "fileType": "text", "path": "${targetdir}", "fileName": source_table, "column": get_hive_columns(source_database, source_table), "writeMode": "append", "fieldDelimiter": "\t", "compress": "gzip" } } }] } } if not os.path.exists(output_path): os.makedirs(output_path) with open(os.path.join(output_path, ".".join([source_database, source_table, "json"])), "w") as f: json.dump(job, f) def main(args): source_database = "" source_table = "" options, arguments = getopt.getopt(args, '-d:-t:', ['sourcedb=', 'sourcetbl=']) for opt_name, opt_value in options: if opt_name in ('-d', '--sourcedb'): source_database = opt_value if opt_name in ('-t', '--sourcetbl'): source_table = opt_value generate_json(source_database, source_table) if __name__ == '__main__': main(sys.argv[1:])
二、使用准备
1、安装python环境
这里我安装的是python3环境
sudo yum install -y python3
2、安装EPEL
EPEL(Extra Packages for Enterprise Linux)是一个由 Fedora Special Interest Group 维护的软件仓库,提供了大量在官方 RHEL 或 CentOS 软件仓库中没有的软件包。当你在 CentOS 或 RHEL 系统上需要安装一些不在官方软件仓库中的软件时,通常会先安装epel - release
sudo yum install -y epel-release
3、安装脚本执行需要的第三方模块
pip3 install pymysql pip3 install cryptography
这里可能由于斑纹问题cryptography安装不上去更新一下pip和setuptools
pip3 install --upgrade pip pip3 install --upgrade setuptools
重新安装cryptography
pip3 install cryptography
三、脚本使用方法
1、配置脚本
首先根据自己服务器修改脚本相关配置
2、创建.py文件
vim /xxx/xxx/xxx/gen_import_config.py
3、执行脚本
python3 /脚本路径/gen_import_config.py -d 数据库名 -t 表名
4、测试生成json文件是否可用
datax.py -p"-Dtargetdir=/表在hdfs存放路径" /生成的json文件路径
执行时首先要确保targetdir目标地址在hdfs上存在,如果没有需要创建后再次执行
到此这篇关于Python脚本实现datax全量同步mysql到hive的文章就介绍到这了,更多相关Python datax全量同步mysql到hive内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!