python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Pytorch之nn.Upsample()和nn.ConvTranspose2d()

Pytorch之nn.Upsample()和nn.ConvTranspose2d()用法详解

作者:北方骑马的萝卜

nn.Upsample和nn.ConvTranspose2d是PyTorch中用于上采样的两种主要方法,nn.Upsample通过不同的插值方法(如nearest、bilinear)执行上采样,没有可学习的参数,适合快速简单的尺寸增加,而nn.ConvTranspose2d通过可学习的转置卷积核进行上采样

nn.Upsample

原理

nn.Upsample 是一个在PyTorch中进行上采样(增加数据维度)的层,其通过指定的方法(如nearest邻近插值或linear、bilinear、trilinear线性插值等)来增大tensor的尺寸

这个层可以在二维或三维数据上按照给定的尺寸或者放大比例来调整输入数据的维度。

用法

import torch.nn as nn

# 创建一个上采样层,通过比例放大
upsample = nn.Upsample(scale_factor=2, mode='nearest')

# 创建一个上采样层,通过目标尺寸放大
upsample = nn.Upsample(size=(height, width), mode='bilinear', align_corners=True)

# 使用上采样层
output = upsample(input)

nn.ConvTranspose2d

原理

nn.ConvTranspose2d 是一个二维转置卷积(有时也称为反卷积)层,它是标准卷积的逆操作

转置卷积通常用于生成型模型(如生成对抗网络GANs),或者在卷积神经网络中进行上采样操作(与nn.Upsample相似,但是通过可学习的卷积核进行)。

转置卷积层有权重和偏置,其可以在训练过程中学习,以便更好地进行上采样。

用法

import torch.nn as nn

# 创建一个转置卷积层
conv_transpose = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1, output_padding=1)

# 使用转置卷积层
output = conv_transpose(input)

比较

在一些场景下,nn.ConvTranspose2d 可能导致所谓的**“棋盘效应”(checkerboard artifacts),这是由于某些上采样步骤的重叠造成的**。相比之下,nn.Upsample 通常不会引入这样的效应,因为它的插值方法是固定的

根据具体的应用场景和需求,选择最合适的上采样层是很重要的。

性能对比

在性能对比方面,nn.Upsample() 和 **nn.ConvTranspose2d()**具有各自的特点和最佳应用场景,两者在速度、内存占用和输出质量方面有所不同。

计算资源(速度与内存)

输出质量

训练时间

应用场景

最后,你应选择基于你的具体需求,例如输出质量、推理时间、模型的复杂度和可训练性等因素进行选择。

实际上,在一些现代的模型架构中,开发者可能会混合使用上采样和转置卷积层,以在保证输出质量的同时优化模型性能。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文