python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python绘制直方图

Python按条件筛选、剔除表格数据并绘制剔除前后的直方图(示例代码)

作者:疯狂学习GIS

本文介绍基于Python语言,读取Excel表格文件数据,以其中某一列数据的值为标准,对于这一列数据处于指定范围的所有行,再用其他几列数据的数值,加以数据筛选与剔除,感兴趣的朋友跟随小编一起看看吧

  本文介绍基于Python语言,读取Excel表格文件数据,以其中某一列数据的值为标准,对于这一列数据处于指定范围所有行,再用其他几列数据的数值,加以数据筛选与剔除;同时,对筛选前、后的数据分别绘制若干直方图,并将结果数据导出保存为一个新的Excel表格文件的方法。

  首先,我们来明确一下本文的具体需求。现有一个Excel表格文件,在本文中我们就以.csv格式的文件为例;其中,如下图所示,这一文件中有一列(在本文中也就是days这一列)数据,我们将其作为基准数据,希望首先取出days数值处于045320365范围内的所有样本(一行就是一个样本),进行后续的操作。

image

  其次,对于取出的样本,再依据其他4列(在本文中也就是blue_difgreen_difred_difinf_dif4列)数据,将这4列数据不在指定数值区域内的行删除。在这一过程中,我们还希望绘制在数据删除前、后,这4列(也就是blue_difgreen_difred_difinf_dif4列)数据各自的直方图,一共是8张图。最后,我们还希望将删除上述数据后的数据保存为一个新的Excel表格文件。

  知道了需求,我们就可以撰写代码。本文所用的代码如下所示。

# -*- coding: utf-8 -*-
"""
Created on Tue Sep 12 07:55:40 2023
@author: fkxxgis
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
original_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715_Main_Over_NIR.csv"
# original_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/TEST.csv"
result_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715_Main_Over_NIR_New.csv"
df = pd.read_csv(original_file_path)
blue_original = df[(df['blue_dif'] >= -0.08) & (df['blue_dif'] <= 0.08)]['blue_dif']
green_original = df[(df['green_dif'] >= -0.08) & (df['green_dif'] <= 0.08)]['green_dif']
red_original = df[(df['red_dif'] >= -0.08) & (df['red_dif'] <= 0.08)]['red_dif']
inf_original = df[(df['inf_dif'] >= -0.1) & (df['inf_dif'] <= 0.1)]['inf_dif']
mask = ((df['days'] >= 0) & (df['days'] <= 45)) | ((df['days'] >= 320) & (df['days'] <= 365))
range_min = -0.03
range_max = 0.03
df.loc[mask, 'blue_dif'] = df.loc[mask, 'blue_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'green_dif'] = df.loc[mask, 'green_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'red_dif'] = df.loc[mask, 'red_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'inf_dif'] = df.loc[mask, 'inf_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x], p =[0.9, 0.1]))
df = df.dropna()
blue_new = df[(df['blue_dif'] >= -0.08) & (df['blue_dif'] <= 0.08)]['blue_dif']
green_new = df[(df['green_dif'] >= -0.08) & (df['green_dif'] <= 0.08)]['green_dif']
red_new = df[(df['red_dif'] >= -0.08) & (df['red_dif'] <= 0.08)]['red_dif']
inf_new = df[(df['inf_dif'] >= -0.1) & (df['inf_dif'] <= 0.1)]['inf_dif']
plt.figure(0)
plt.hist(blue_original, bins = 50)
plt.figure(1)
plt.hist(green_original, bins = 50)
plt.figure(2)
plt.hist(red_original, bins = 50)
plt.figure(3)
plt.hist(inf_original, bins = 50)
plt.figure(4)
plt.hist(blue_new, bins = 50)
plt.figure(5)
plt.hist(green_new, bins = 50)
plt.figure(6)
plt.hist(red_new, bins = 50)
plt.figure(7)
plt.hist(inf_new, bins = 50)
df.to_csv(result_file_path, index=False)

  首先,我们通过pd.read_csv函数从指定路径的.csv文件中读取数据,并将其存储在名为dfDataFrame中。

  接下来,通过一系列条件筛选操作,从原始数据中选择满足特定条件的子集。具体来说,我们筛选出了在blue_difgreen_difred_difinf_dif4列中数值在一定范围内的数据,并将这些数据存储在名为blue_originalgreen_originalred_originalinf_original的新Series中,这些数据为我们后期绘制直方图做好了准备。

  其次,创建一个名为mask的布尔掩码,该掩码用于筛选满足条件的数据。在这里,它筛选出了days列的值在045之间或在320365之间的数据。

  随后,我们使用apply函数和lambda表达式,对于days列的值在045之间或在320365之间的行,如果其blue_difgreen_difred_difinf_dif4列的数据不在指定范围内,那么就将这列的数据随机设置为NaNp =[0.9, 0.1]则是指定了随机替换为NaN的概率。这里需要注意,如果我们不给出p =[0.9, 0.1]这样的概率分布,那么程序将依据均匀分布的原则随机选取数据。

  最后,我们使用dropna函数,删除包含NaN值的行,从而得到筛选处理后的数据。其次,我们依然根据这四列的筛选条件,计算出处理后的数据的子集,存储在blue_newgreen_newred_newinf_new中。紧接着,使用Matplotlib创建直方图来可视化原始数据和处理后数据的分布;这些直方图被分别存储在8个不同的图形中。

  代码的最后,将处理后的数据保存为新的.csv文件,该文件路径由result_file_path指定。

  运行上述代码,我们将得到8张直方图,如下图所示。且在指定的文件夹中看到结果文件。

到此这篇关于Python按条件筛选、剔除表格数据并绘制剔除前后的直方图的文章就介绍到这了,更多相关Python绘制直方图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文