python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python插入数据到MySQL数据库

使用Python实现插入100万条数据到MySQL数据库

作者:悬崖上的金鱼

这篇文章主要为大家详细介绍了如何使用Python实现插入100万条数据到MySQL数据库,文中的示例代码讲解详细,有需要的小伙伴可以参考一下

Python插入100万条数据到MySQL数据库

步骤一:导入所需模块和库

首先,我们需要导入 MySQL 连接器模块和 Faker 模块。MySQL 连接器模块用于连接到 MySQL 数据库,而 Faker 模块用于生成虚假数据。

import mysql.connector  # 导入 MySQL 连接器模块
from faker import Faker  # 导入 Faker 模块,用于生成虚假数据

步骤二:创建 Faker 实例

然后,我们创建一个 Faker 实例,以便使用其功能生成虚假数据。

faker = Faker() # 创建 Faker 实例

步骤三:连接到 MySQL 数据库

接下来,我们使用 MySQL 连接器模块连接到 MySQL 数据库。需要提供主机地址、用户名、密码和数据库名称。

conn = mysql.connector.connect(
    host='localhost',  # 数据库主机地址
    user='root',       # 数据库用户名
    password='123456', # 数据库密码
    database='test2'   # 数据库名称
)

步骤四:创建游标对象

然后,我们创建一个游标对象,用于执行 SQL 语句。

cursor = conn.cursor()  # 创建游标对象,用于执行 SQL 语句

步骤五:插入虚假数据

现在,我们准备开始插入虚假数据到数据库中。我们使用循环生成多条数据,并将其插入到数据库表中。

for _ in range(1000000):  # 循环100万次,插入100万条数据
    # 使用 Faker 实例生成虚假数据
    name = faker.name()                   # 姓名
    address = faker.address()             # 地址
    email = faker.email()                 # 电子邮件
    phone_number = faker.phone_number()   # 电话号码
    job_title = faker.job()               # 职位
    company = faker.company()             # 公司
    date_of_birth = faker.date_of_birth() # 出生日期
    credit_card_number = faker.credit_card_number()  # 信用卡号

    # 定义 SQL 插入语句
    sql = "INSERT INTO fake_data (name, address, email, phone_number, job_title, company, date_of_birth, credit_card_number) VALUES (%s, %s, %s, %s, %s, %s, %s, %s)"

    # 设置参数值
    val = (name, address, email, phone_number, job_title, company, date_of_birth, credit_card_number)

    # 执行 SQL 插入语句
    cursor.execute(sql, val)

步骤六:提交事务和关闭连接

最后,我们提交事务以保存更改,并关闭游标和数据库连接。

conn.commit()   # 提交事务,保存更改
cursor.close()  # 关闭游标
conn.close()    # 关闭数据库连接

使用 Python 将 MySQL 数据库中的数据逐步查询并写入多个 Excel 文件

步骤一:导入所需模块和库

首先,我们需要导入 os 模块用于文件和目录操作,pandas 库用于数据处理,以及 mysql.connector 模块用于连接 MySQL 数据库。

import os  # 导入 os 模块,用于文件和目录操作
import pandas as pd  # 导入 pandas 库并使用 pd 别名,用于数据处理
import mysql.connector  # 导入 mysql.connector 模块,用于连接 MySQL 数据库

步骤二:连接到 MySQL 数据库

conn = mysql.connector.connect(
    host='localhost',  # 数据库主机地址
    user='root',       # 数据库用户名
    password='123456', # 数据库密码
    database='test2'   # 数据库名称
)

步骤三:设置每个 Excel 文件的行数限制和输出文件夹

chunk_size = 50000  # 每个 Excel 文件的行数限制
output_folder = "output_data"  # 输出文件夹名称
if not os.path.exists(output_folder):  # 如果文件夹不存在,则创建
    os.makedirs(output_folder)

步骤四:逐步查询数据库并写入 Excel 文件

offset = 0  # 查询偏移量初始值为0
while True:  # 使用循环查询数据库,直到数据查询完毕
    query = f"SELECT * FROM fake_data LIMIT {offset}, {chunk_size}"  # 构造 SQL 查询语句
    df = pd.read_sql(query, conn)  # 使用 pandas 读取 SQL 查询结果为 DataFrame
    if df.empty:  # 如果查询结果为空,则退出循环
        break
    output_file = os.path.join(output_folder, f"output_{offset // chunk_size + 1}.xlsx")  # 构造输出文件路径
    df.to_excel(output_file, index=False)  # 将 DataFrame 写入 Excel 文件,不写入索引列
    offset += chunk_size  # 更新查询偏移量,准备下一次查询

步骤五:关闭数据库连接

conn.close()  # 关闭数据库连接

最后,我们关闭数据库连接,释放资源。

到此这篇关于使用Python实现插入100万条数据到MySQL数据库的文章就介绍到这了,更多相关Python插入数据到MySQL数据库内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文